Abstract

Electrically variable gradient index liquid crystal lens is developed that uses flat uniform liquid crystal layer and electrodes. The spatial modulation of the electric field across the lens aperture is obtained by the modulation of the effective dielectric constant of an integrated doublet lens structure. The dielectric constants of two materials, composing the doublet, are chosen to be different at electrical driving frequencies, while their optical refractive indexes are the same, hiding thus the structure from the optical point of view. This “hidden layer” approach decouples the electrical and optical functions of that structure, increases significantly the performance of the lens and enables new functionalities. The technical performance and various driving schemes of the obtained lens are presented and analyzed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
    [CrossRef]
  2. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128 (2004).
    [CrossRef]
  3. L. M. Blinov and V. G. Chigrinov, Electrooptic effects in Liquid Crystal Materials, (Springer-Verlag, N.Y., 1994), pp. 459.
  4. S. Sato, “Applications of Liquid Crystals to Variable-Focusing Lenses,” Opt. Rev. 6(6), 471–485 (1999).
    [CrossRef]
  5. L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
    [CrossRef]
  6. V. V. Presnyakov, K. E. Asatryan, T. Galstian, and A. Tork, “Tunable polymer-stabilized liquid crystal microlens,” Opt. Express 10(17), 865–870 (2002).
    [PubMed]
  7. S. T. Kowel, P. G. Kornreich, and D. S. Cleverly, Adaptive liquid crystal lens, US Patent 4,572,616, 1986 (filed August 1982.
  8. N. A. Riza and M. C. Dejule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19(14), 1013–1015 (1994).
    [CrossRef] [PubMed]
  9. B. Wang, M. Ye, and S. Sato, “Liquid-crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
    [CrossRef]
  10. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
    [CrossRef]
  11. G. D. Love and A. F. Naumov, “Modal liquid crystal lenses,” Liq. Cryst. Today 10(1), 1–4 (2000).
    [CrossRef]
  12. M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
    [CrossRef]
  13. M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing Driving Voltages for Liquid Crystal Lens using Weakly Conductive Thin Film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
    [CrossRef]
  14. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41 (Part 2, No.11A), L1232–L1233 (2002).
    [CrossRef]
  15. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
    [CrossRef]
  16. B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
    [CrossRef] [PubMed]

2008 (1)

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing Driving Voltages for Liquid Crystal Lens using Weakly Conductive Thin Film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[CrossRef]

2005 (2)

B. Wang, M. Ye, and S. Sato, “Liquid-crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
[CrossRef]

H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[CrossRef]

2004 (3)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128 (2004).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[CrossRef] [PubMed]

2002 (2)

V. V. Presnyakov, K. E. Asatryan, T. Galstian, and A. Tork, “Tunable polymer-stabilized liquid crystal microlens,” Opt. Express 10(17), 865–870 (2002).
[PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41 (Part 2, No.11A), L1232–L1233 (2002).
[CrossRef]

2000 (3)

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
[CrossRef]

G. D. Love and A. F. Naumov, “Modal liquid crystal lenses,” Liq. Cryst. Today 10(1), 1–4 (2000).
[CrossRef]

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[CrossRef]

1999 (1)

S. Sato, “Applications of Liquid Crystals to Variable-Focusing Lenses,” Opt. Rev. 6(6), 471–485 (1999).
[CrossRef]

1998 (1)

1994 (1)

Asatryan, K. E.

Belopukhov, V. N.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[CrossRef]

Commander, L. G.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
[CrossRef]

Day, S. E.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
[CrossRef]

Dejule, M. C.

Fan, Y. H.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Galstian, T.

Gauza, S.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Guralnik, I. R.

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128 (2004).
[CrossRef]

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41 (Part 2, No.11A), L1232–L1233 (2002).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128 (2004).
[CrossRef]

Loktev, M. Yu.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[CrossRef]

A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
[CrossRef]

Love, G. D.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[CrossRef]

G. D. Love and A. F. Naumov, “Modal liquid crystal lenses,” Liq. Cryst. Today 10(1), 1–4 (2000).
[CrossRef]

Naumov, A. F.

G. D. Love and A. F. Naumov, “Modal liquid crystal lenses,” Liq. Cryst. Today 10(1), 1–4 (2000).
[CrossRef]

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[CrossRef]

A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
[CrossRef]

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41 (Part 2, No.11A), L1232–L1233 (2002).
[CrossRef]

Presnyakov, V. V.

Ren, H.

H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[CrossRef]

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Riza, N. A.

Sato, S.

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing Driving Voltages for Liquid Crystal Lens using Weakly Conductive Thin Film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Liquid-crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[CrossRef] [PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41 (Part 2, No.11A), L1232–L1233 (2002).
[CrossRef]

S. Sato, “Applications of Liquid Crystals to Variable-Focusing Lenses,” Opt. Rev. 6(6), 471–485 (1999).
[CrossRef]

Selviah, D. R.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
[CrossRef]

Tork, A.

Vdovin, G.

Vdovin, G. V.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[CrossRef]

Vladimirov, F. L.

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[CrossRef]

Wang, B.

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing Driving Voltages for Liquid Crystal Lens using Weakly Conductive Thin Film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Liquid-crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[CrossRef] [PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41 (Part 2, No.11A), L1232–L1233 (2002).
[CrossRef]

Wu, S. T.

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

Wu, S.-T.

H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[CrossRef]

Yamaguchi, M.

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing Driving Voltages for Liquid Crystal Lens using Weakly Conductive Thin Film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[CrossRef]

Ye, M.

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing Driving Voltages for Liquid Crystal Lens using Weakly Conductive Thin Film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Liquid-crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43(17), 3420–3425 (2004).
[CrossRef] [PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41 (Part 2, No.11A), L1232–L1233 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004).
[CrossRef]

H. Ren and S.-T. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86(21), 211107 (2005).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (2)

M. Ye, B. Wang, M. Yamaguchi, and S. Sato, “Reducing Driving Voltages for Liquid Crystal Lens using Weakly Conductive Thin Film,” Jpn. J. Appl. Phys. 47(6), 4597–4599 (2008).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid Crystal Lens with Spherical Electrode,” Jpn. J. Appl. Phys. 41 (Part 2, No.11A), L1232–L1233 (2002).
[CrossRef]

Liq. Cryst. Today (1)

G. D. Love and A. F. Naumov, “Modal liquid crystal lenses,” Liq. Cryst. Today 10(1), 1–4 (2000).
[CrossRef]

Opt. Commun. (2)

B. Wang, M. Ye, and S. Sato, “Liquid-crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
[CrossRef]

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177(1-6), 157–170 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Rev. (1)

S. Sato, “Applications of Liquid Crystals to Variable-Focusing Lenses,” Opt. Rev. 6(6), 471–485 (1999).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[CrossRef]

Other (2)

S. T. Kowel, P. G. Kornreich, and D. S. Cleverly, Adaptive liquid crystal lens, US Patent 4,572,616, 1986 (filed August 1982.

L. M. Blinov and V. G. Chigrinov, Electrooptic effects in Liquid Crystal Materials, (Springer-Verlag, N.Y., 1994), pp. 459.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic representation of the hidden layer structure that is composed of an additional “mid” substrate, “inner” and “outer” lenses.

Fig. 2
Fig. 2

a. Schematic demonstration of the principle of “dielectric devisor” by the example of two uniform dielectric layers (Mediums 1 and 2) with different dielectric constants ε and thicknesses d.

Fig. 2
Fig. 2

b. Theoretical demonstration of the maximum achievable optical power (using simulation parameters described in the main text) depending upon the dielectric constant of the outer lens material.

Fig. 3
Fig. 3

Typical microphotography of the tunable lens (placed between two crossed polarizers and illuminated by a lamp through a narrow bandpass interference filter) for low (left photo) and high (right photo) optical powers.

Fig. 4
Fig. 4

Optical Power (in Diopters) versus driving RMS voltage (at 1 kHz square shaped signal) obtained by a Shack Hartman wavefront sensor. The experimental error is estimated to be ± 0.1 Diopters. The line is used for eye-guide only.

Fig. 5
Fig. 5

Optical RMS aberrations (in μm) versus driving RMS voltage (at 1 kHz square shaped signal) obtained by a Shack Hartman wavefront sensor. The experimental error is estimated to be ± 0.005μm. The line is used for eye-guide only.

Fig. 6
Fig. 6

Optical Power (in Diopters) versus driving RMS voltage (square shaped drive signal) at three different driving frequencies; spheres: 1 kHz (lower curve), squares: 0.5 kHz (mid curve) and crosses: 0.1 kHz (top curve), obtained by a Shack Hartman wavefront sensor. The experimental error is estimated to be ± 0.1 Diopters. Lines are used for eye-guide only.

Fig. 7
Fig. 7

Optical RMS aberrations (in μm) versus driving RMS voltage (square shaped drive signal) at three different driving frequencies; spheres: 1 kHz (lower curve), squares: 0.5 kHz (mid curve) and crosses: 0.1 kHz (top curve), obtained by a Shack Hartman wavefront sensor. The experimental error is estimated to be ± 0.005μm. Lines are used for eye-guide only.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V 0 = V 1 + V 2
ε 1 E 1 z = ε 2 E 2 z
V 2 = V 0 / [ 1 + ε 2 d 1 / ( ε 1 d 2 ) ]
V i = V 0 C / c i

Metrics