Abstract

Polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) is used to measure three-dimensional phase-retardation images of birefringent biological tissue in vivo. PS-SS-OCT with continuous source polarization modulation is used to multiplex the incident states of polarization in the signal frequency of each A-scan. Although it offers the advantage of measurement speed that is as high as that of standard SS-OCT, its disadvantage is low axial measurement range. To overcome this drawback, we employed the B-M-mode scan (BM-scan) method, which removes complex conjugate ambiguity by applying phase modulation along the transversal scanning direction. Since polarization modulation and BM-scan are applied in different scanning directions, these methods can be combined to make the optimum use of both full range and polarization-sensitive imaging. Phase fluctuations that cause measurement failure were numerically canceled before demodulating the B-scan oriented modulation. After removing complex conjugate artifacts, the axial measurement range was 5.35 mm, and the signal-to-conjugate ratio was 40.5 dB. We demonstrated retinal imaging using the PS-SS-OCT system with a frequency-swept laser at a center wavelength of 1064 nm and an axial resolution of 11.4 µm in tissue. Full-range polarization-sensitive retinal images showed characteristic birefringence of fibrous tissues such as retinal nerve fiber, sclera, and lamina cribrosa.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
    [CrossRef]
  2. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [CrossRef] [PubMed]
  3. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004).
    [CrossRef] [PubMed]
  4. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
    [CrossRef] [PubMed]
  5. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008).
    [CrossRef] [PubMed]
  6. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
    [CrossRef] [PubMed]
  7. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
    [CrossRef] [PubMed]
  8. C. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001).
    [CrossRef] [PubMed]
  9. S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, “Fiber-based polarization-sensitive Müller matrix optical coherence tomography with continuous source polarization modulation,” Appl. Opt. 44, 5463–5467 (2005).
    [CrossRef] [PubMed]
  10. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002).
    [CrossRef]
  11. Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85, 3023–3025 (2004).
    [CrossRef]
  12. B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13, 3931–3944 (2005).
    [CrossRef] [PubMed]
  13. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
    [CrossRef] [PubMed]
  14. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
    [CrossRef] [PubMed]
  15. W. Oh, S. Yun, B. Vakoc, M. Shishkov, A. Desjardins, B. Park, J. de Boer, G. Tearney, and B. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16, 1096–1103 (2008).
    [CrossRef] [PubMed]
  16. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
    [CrossRef] [PubMed]
  17. T. Schmoll, E. Götzinger, M. Pircher, C. K. Hitzenberger, and R. A. Leitgeb, “Single-camera polarization sensitive spectral-domain oct by spatial frequency encoding,” Opt. Lett. 35, 241–243 (2010).
    [CrossRef] [PubMed]
  18. M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-μm probe,” Opt. Express 17, 12385–12396 (2009).
    [CrossRef] [PubMed]
  19. B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic oct at 1050 nm,” Opt. Express 11, 1980–1986 (2003).
    [CrossRef] [PubMed]
  20. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, and A. Chavez-Pirson, “andW. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005).
    [CrossRef] [PubMed]
  21. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14, 4403–4411 (2006).
    [CrossRef] [PubMed]
  22. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
    [CrossRef] [PubMed]
  23. B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, and S. Blinder, “andW. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
    [CrossRef] [PubMed]
  24. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
    [CrossRef] [PubMed]
  25. P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett. 33, 2479–2481 (2008).
    [PubMed]
  26. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 khz tuning repetition rate ultrahigh-speed wavelength swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).
    [CrossRef] [PubMed]
  27. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
    [CrossRef] [PubMed]
  28. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
    [CrossRef]
  29. J. Zhang, W. Jung, J. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12, 6033–6039 (2004).
    [CrossRef] [PubMed]
  30. A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10, 064005 (2005).
    [CrossRef]
  31. M. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral domain and swept-source oct using 3x3 fiber couplers,” Opt. Express 13, 957–967 (2005).
    [CrossRef] [PubMed]
  32. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency domain imaging through polarization-based optical demodulation,” Opt. Lett. 31, 362–364 (2006).
    [CrossRef] [PubMed]
  33. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17, 7–24 (2009).
    [CrossRef] [PubMed]
  34. B. Hofer, B. Považay, A. Unterhuber, L. Wang, B. Hermann, S. Rey, G. Matz, and W. Drexler, “Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1060 nm,” Opt. Express 18, 4898–4919 (2010).
    [CrossRef] [PubMed]
  35. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous b-m-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
    [CrossRef] [PubMed]
  36. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
    [CrossRef]
  37. S. Vergnole, G. Lamouche, and M. L. Dufour, “Artifact removal in Fourier-domain optical coherence tomography with a piezoelectric fiber stretcher,” Opt. Lett. 33, 732–734 (2008).
    [CrossRef] [PubMed]
  38. C. Fan, Y. Wang, and R. K. Wang, “Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection,” Opt. Express 15, 7950–7961 (2007).
    [CrossRef] [PubMed]
  39. L. An, and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3423–3425 (2007).
    [CrossRef] [PubMed]
  40. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
    [CrossRef] [PubMed]
  41. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32, 3453–3455 (2007).
    [CrossRef] [PubMed]
  42. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005).
    [CrossRef] [PubMed]
  43. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1μm spectral-domain optical coherence tomography using bm-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
    [CrossRef] [PubMed]
  44. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
    [CrossRef] [PubMed]
  45. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
    [CrossRef] [PubMed]
  46. C. Brosseau, Fundamentals of polarized light: a statistical optics approach (John Wiley, 1998).

2010 (3)

2009 (2)

2008 (9)

W. Oh, S. Yun, B. Vakoc, M. Shishkov, A. Desjardins, B. Park, J. de Boer, G. Tearney, and B. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16, 1096–1103 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef] [PubMed]

P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett. 33, 2479–2481 (2008).
[PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1μm spectral-domain optical coherence tomography using bm-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
[CrossRef] [PubMed]

S. Vergnole, G. Lamouche, and M. L. Dufour, “Artifact removal in Fourier-domain optical coherence tomography with a piezoelectric fiber stretcher,” Opt. Lett. 33, 732–734 (2008).
[CrossRef] [PubMed]

2007 (7)

C. Fan, Y. Wang, and R. K. Wang, “Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection,” Opt. Express 15, 7950–7961 (2007).
[CrossRef] [PubMed]

L. An, and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3423–3425 (2007).
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[CrossRef] [PubMed]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32, 3453–3455 (2007).
[CrossRef] [PubMed]

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
[CrossRef]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, and S. Blinder, “andW. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

2006 (6)

2005 (8)

S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, “Fiber-based polarization-sensitive Müller matrix optical coherence tomography with continuous source polarization modulation,” Appl. Opt. 44, 5463–5467 (2005).
[CrossRef] [PubMed]

B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13, 3931–3944 (2005).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
[CrossRef] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10, 064005 (2005).
[CrossRef]

M. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral domain and swept-source oct using 3x3 fiber couplers,” Opt. Express 13, 957–967 (2005).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 khz tuning repetition rate ultrahigh-speed wavelength swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, and A. Chavez-Pirson, “andW. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005).
[CrossRef] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005).
[CrossRef] [PubMed]

2004 (4)

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
[CrossRef] [PubMed]

J. Zhang, W. Jung, J. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12, 6033–6039 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85, 3023–3025 (2004).
[CrossRef]

2003 (1)

2002 (2)

2001 (1)

1997 (1)

1992 (1)

Adler, D. C.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[CrossRef] [PubMed]

Ahnelt, P.

Akiba, M.

An, L.

Aoki, G.

Baumann, B.

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008).
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[CrossRef] [PubMed]

Bizheva, K.

Blinder, S.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, and S. Blinder, “andW. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Bouma, B.

Bouma, B. E.

Boyd, S.

Cense, B.

Chavez-Pirson, A.

Chen, T. C.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004).
[CrossRef] [PubMed]

Chen, Y.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef] [PubMed]

Chen, Z.

Choma, M. A.

M. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral domain and swept-source oct using 3x3 fiber couplers,” Opt. Express 13, 957–967 (2005).
[CrossRef] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10, 064005 (2005).
[CrossRef]

Davis, A. M.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10, 064005 (2005).
[CrossRef]

de Boer, J.

de Boer, J. F.

Desjardins, A.

Drexler, W.

Dufour, M. L.

Duker, J. S.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef] [PubMed]

Elsner, A. E.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

Endo, T.

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous b-m-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85, 3023–3025 (2004).
[CrossRef]

Fabritius, T.

Falkner-Radler, C.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, and S. Blinder, “andW. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Fan, C.

Fercher, A.

Fercher, A. F.

Findl, O.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

Forbes, P.

Fujimoto, J. G.

Geitzenauer, W.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

Glittenberg, C.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, and S. Blinder, “andW. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Gorczynska, I.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef] [PubMed]

Götzinger, E.

T. Schmoll, E. Götzinger, M. Pircher, C. K. Hitzenberger, and R. A. Leitgeb, “Single-camera polarization sensitive spectral-domain oct by spatial frequency encoding,” Opt. Lett. 35, 241–243 (2010).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008).
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
[CrossRef] [PubMed]

C. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001).
[CrossRef] [PubMed]

Hee, M. R.

Hermann, B.

Hirn, C.

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008).
[CrossRef] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

T. Schmoll, E. Götzinger, M. Pircher, C. K. Hitzenberger, and R. A. Leitgeb, “Single-camera polarization sensitive spectral-domain oct by spatial frequency encoding,” Opt. Lett. 35, 241–243 (2010).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008).
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
[CrossRef] [PubMed]

Hofer, B.

B. Hofer, B. Považay, A. Unterhuber, L. Wang, B. Hermann, S. Rey, G. Matz, and W. Drexler, “Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1060 nm,” Opt. Express 18, 4898–4919 (2010).
[CrossRef] [PubMed]

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17, 7–24 (2009).
[CrossRef] [PubMed]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, and S. Blinder, “andW. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Holzwarth, R.

Hong, Y.

Huang, D.

Huber, R.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[CrossRef] [PubMed]

Itoh, M.

Iwasaki, T.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

Izatt, J. A.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10, 064005 (2005).
[CrossRef]

M. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral domain and swept-source oct using 3x3 fiber couplers,” Opt. Express 13, 957–967 (2005).
[CrossRef] [PubMed]

Jiao, S.

Jung, W.

Katada, C.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85, 3023–3025 (2004).
[CrossRef]

Knight, J.

Kowalczyk, A.

Lamouche, G.

Lasser, T.

Lee, E. C.

Leitgeb, R.

Leitgeb, R. A.

Leydolt, C.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

Lim, H.

Lim, Y.

Madjarova, V. D.

Makita, S.

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
[CrossRef] [PubMed]

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-μm probe,” Opt. Express 17, 12385–12396 (2009).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1μm spectral-domain optical coherence tomography using bm-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous b-m-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85, 3023–3025 (2004).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002).
[CrossRef]

Malchow, D.

Matz, G.

Mei, M.

Michaely, R.

Michels, S.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

Milner, T. E.

Miura, M.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

Morgan, J. E.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, and S. Blinder, “andW. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Mujat, M.

Mutoh, M.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85, 3023–3025 (2004).
[CrossRef]

Nelson, J.

Nelson, J. S.

Oh, W.

Oh, W. Y.

Park, B.

Park, B. H.

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004).
[CrossRef] [PubMed]

Pierce, M. C.

Pircher, M.

T. Schmoll, E. Götzinger, M. Pircher, C. K. Hitzenberger, and R. A. Leitgeb, “Single-camera polarization sensitive spectral-domain oct by spatial frequency encoding,” Opt. Lett. 35, 241–243 (2010).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008).
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
[CrossRef] [PubMed]

C. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001).
[CrossRef] [PubMed]

Považay, B.

Puvanathasan, P.

Ren, Z.

Rey, S.

Russell, P. S. J.

Sarunic, M.

Sattmann, H.

Schmidt-Erfurth, U.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

Schmoll, T.

Schubert, C.

Schuman, J. S.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef] [PubMed]

Sekhar, S. C.

Shishkov, M.

Srinivasan, V. J.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef] [PubMed]

Sticker, M.

Stoica, G.

Sutoh, Y.

Swanson, E. A.

Takahashi, M.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85, 3023–3025 (2004).
[CrossRef]

Tearney, G.

Tearney, G. J.

Todorovic, M.

Unterhuber, A.

Vakoc, B.

Vakoc, B. J.

van Gemert, M. J. C.

Vass, C.

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008).
[CrossRef] [PubMed]

Vergnole, S.

Wadsworth, W.

Wang, L.

Wang, L. V.

Wang, R. K.

Wang, Y.

Wojtkowski, M.

Yamanari, M.

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
[CrossRef] [PubMed]

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-μm probe,” Opt. Express 17, 12385–12396 (2009).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

Yang, C.

Yasuno, Y.

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
[CrossRef] [PubMed]

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-μm probe,” Opt. Express 17, 12385–12396 (2009).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1μm spectral-domain optical coherence tomography using bm-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous b-m-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85, 3023–3025 (2004).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002).
[CrossRef]

Yatagai, T.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous b-m-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85, 3023–3025 (2004).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002).
[CrossRef]

Yun, S.

Yun, S. H.

Yun, S.-H.

Zeiler, F.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, and S. Blinder, “andW. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Zhang, J.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
[CrossRef]

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85, 3023–3025 (2004).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (5)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, and S. Blinder, “andW. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10, 064005 (2005).
[CrossRef]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Express (20)

C. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001).
[CrossRef] [PubMed]

B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express 13, 3931–3944 (2005).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2005).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006).
[CrossRef] [PubMed]

W. Oh, S. Yun, B. Vakoc, M. Shishkov, A. Desjardins, B. Park, J. de Boer, G. Tearney, and B. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16, 1096–1103 (2008).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008).
[CrossRef] [PubMed]

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-μm probe,” Opt. Express 17, 12385–12396 (2009).
[CrossRef] [PubMed]

B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic oct at 1050 nm,” Opt. Express 11, 1980–1986 (2003).
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, and A. Chavez-Pirson, “andW. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13, 3252–3258 (2005).
[CrossRef] [PubMed]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14, 4403–4411 (2006).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15, 6121–6139 (2007).
[CrossRef] [PubMed]

M. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral domain and swept-source oct using 3x3 fiber couplers,” Opt. Express 13, 957–967 (2005).
[CrossRef] [PubMed]

B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17, 7–24 (2009).
[CrossRef] [PubMed]

B. Hofer, B. Považay, A. Unterhuber, L. Wang, B. Hermann, S. Rey, G. Matz, and W. Drexler, “Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1060 nm,” Opt. Express 18, 4898–4919 (2010).
[CrossRef] [PubMed]

C. Fan, Y. Wang, and R. K. Wang, “Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection,” Opt. Express 15, 7950–7961 (2007).
[CrossRef] [PubMed]

J. Zhang, W. Jung, J. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12, 6033–6039 (2004).
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[CrossRef] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1μm spectral-domain optical coherence tomography using bm-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
[CrossRef] [PubMed]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010).
[CrossRef] [PubMed]

Opt. Lett. (12)

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004).
[CrossRef] [PubMed]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32, 3453–3455 (2007).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002).
[CrossRef]

P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, “High-speed, high-resolution Fourier domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region,” Opt. Lett. 33, 2479–2481 (2008).
[PubMed]

W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 khz tuning repetition rate ultrahigh-speed wavelength swept semiconductor laser,” Opt. Lett. 30, 3159–3161 (2005).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
[CrossRef]

L. An, and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3423–3425 (2007).
[CrossRef] [PubMed]

S. Vergnole, G. Lamouche, and M. L. Dufour, “Artifact removal in Fourier-domain optical coherence tomography with a piezoelectric fiber stretcher,” Opt. Lett. 33, 732–734 (2008).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency domain imaging through polarization-based optical demodulation,” Opt. Lett. 31, 362–364 (2006).
[CrossRef] [PubMed]

T. Schmoll, E. Götzinger, M. Pircher, C. K. Hitzenberger, and R. A. Leitgeb, “Single-camera polarization sensitive spectral-domain oct by spatial frequency encoding,” Opt. Lett. 35, 241–243 (2010).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[CrossRef] [PubMed]

Other (1)

C. Brosseau, Fundamentals of polarized light: a statistical optics approach (John Wiley, 1998).

Supplementary Material (6)

» Media 1: AVI (3116 KB)     
» Media 2: AVI (11238 KB)     
» Media 3: AVI (3670 KB)     
» Media 4: AVI (12626 KB)     
» Media 5: AVI (2862 KB)     
» Media 6: AVI (13818 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic diagram of system. SS: frequency-swept laser source, PC: polarization controller, LP: linear polarizer, EOM: electrooptic polarization modulator, PM: phase modulator, BS: beamsplitter, PBS: polarizing beamsplitter.

Fig. 2.
Fig. 2.

Schematic of triggers and waveforms. Optical output power of light source (blue), trigger from light source (red), delayed trigger for the PM (green), and waveform driving PM (purple) are shown. The trigger from the light source is delayed to drive the PM, as indicated by black arrows.

Fig. 3.
Fig. 3.

Schematic figure of 2D Fourier transformed spectra. Red/blue and orange/light-blue crosses indicate central positions of complex conjugates of non-modulated and modulated signals, respectively. Green and yellow regions are extracted to obtain the non-modulated and modulated signals, respectively.

Fig. 4.
Fig. 4.

Extracted regions of non-modulated (green) and modulated (orange) signals in signal frequency space. Red and blue curves are complex conjugates of each other. Note that the modulation and Nyquist frequencies of the sampling are 40 and 50 MHz, respectively.

Fig. 5.
Fig. 5.

Upper figure shows OCT intensity of non-modulated signal. (a) and (b) indicate the front and back surfaces of the slide glass. The lower figure shows the relative phase between the two A-scans. Red and blue lines show the estimated relative phase and the intercept.

Fig. 6.
Fig. 6.

Relative phase of OCT signals in full axial range. The red line shows ∠(Ĩh(−1)/Ĩh0) in the positive axial depth and ∠(−Ĩh(+1)/Ĩh0) in the negative axial depth. The blue dashed line shows their median, which equals ∠(j*1,1/j*1,2).

Fig. 7.
Fig. 7.

Measured relative phases of OCT signals in full axial range. In the graph legends, (a) represents the phase compensation of the electric circuit and (b) represents the phase compensation estimated using Eq. (22). The relative phase averaged in the full axial depth was subtracted from each plot.

Fig. 8.
Fig. 8.

Averaged A-scan profiles before (blue) and after (red) demodulation of BM-scan. (a) and (b) indicate the front and back surfaces of the slide glass in the calibration arm. (c) and (d) indicate the mirror and its complex conjugate signal in the sample arm. (e) indicates the mirror in the calibration arm.

Fig. 9.
Fig. 9.

Intensity images (a) before and (b) after demodulation of BM-scan, and phase retardation images (c) before and (d), (e) after demodulation of BM-scan. (d) and (e) are the phase retardation images before and after compensation of phase difference estimated using Eq. (22), respectively. The subject was the optic nerve head of the left eye of the human volunteer. 1024 A-scans and 94 B-scans were acquired in 34.1 ms and 3.8 s, respectively. The image size is 2.7 (x) × 2.73 (z) mm2. In (c)–(e), low-intensity regions are masked by black color. Intensity movies (Media 1, Media 2) and phase-retardation movies (Media 3, Media 4) are available.

Fig. 10.
Fig. 10.

(a) Intensity and (b) phase retardation images of retina between fovea and ONH. (c) and (d) are intensity and phase retardation images at superior region, respectively. Red arrows indicate a myopic conus. 2048 A-scans were acquired in 68.3 ms. The image size is 6.0 (x) × 2.79 (z) mm2.

Fig. 11.
Fig. 11.

(a) Intensity and (b) phase retardation images of ONH. 2048 A-scans were acquired in 68.3 ms. The image size is 6.0 (x) × 2.79 (z) mm2.

Fig. 12.
Fig. 12.

(upper) en face intensity and (lower) phase retardation images of optic nerve head. The movies show the en face slices from the anterior to the posterior direction (Media 5, Media 6). 1024 A-scans and 94 B-scans were acquired in 34.1 ms and 3.8 s, respectively. The image size is 2.7 × 1.9 mm2.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

J R 1 ( π 4 ) [ e i φ 2 0 0 e i φ 2 ] J R ( π 4 ) [ 0 1 ] = [ i sin φ 2 cos φ 2 ] ,
J R ( θ ) = [ cos θ sin θ sin θ cos θ ] ,
φ = A 0 sin ( ω m t ϕ ( n ) ) ,
J all = J out J sam J in ,
J all = J out J sam J in J R 1 ( π 4 ) J R ( π 4 ) J all J R ( π 4 ) .
J all = [ j 1,1 j 1,2 j 2,1 j 2,2 ] .
[ H sam V sam ] = P s s ( k ) J all [ i sin φ 2 cos φ 2 ] e i 2 k z s
= P s s ( k ) 2 [ j 1,1 e i φ 2 + j 1,2 e i φ 2 j 2,1 e i φ 2 + j 2,2 e i φ 2 ] e i 2 k z s ,
H ref ( k ) = P r s ( k ) e i φ 2 e i β x e i 2 k z r ,
H ref ( k ) + H sam ( k ) 2 = H ref ( k ) 2 + H sam ( k ) 2 + H ref ( k ) H sam * ( k ) + c . c .
= P r S ( k ) + P s S ( k ) + P r P s S ( k ) 2 ( j 1 , 1 * e i φ + j 1 , 2 * ) e i β x e i 2 k z + c . c . ,
t ω [ e i φ ] = J 0 ( A 0 ) J 1 ( A 0 ) { e i ϕ ( n ) δ ( ω ω m ) e i ϕ ( n ) δ ( ω + ω m ) } + ( higher orders ) ,
t ω [ H ref ( t ) H sam * ( t ) ]
= [ J 1 ( A 0 ) j 1 , 1 * { e i ϕ ( n ) δ ( ω ω m 2 α z ) e i ϕ ( n ) δ ( ω + ω m 2 α z ) } + j 1 , 2 * δ ( ω 2 α z ) ]
× e i β x e i 2 ( k 0 + α ε ) z ,
t ω [ H ref * ( t ) H sam ( t ) ]
= [ + J 1 ( A 0 ) j 1 , 1 { e i ϕ ( n ) δ ( ω ω m + 2 α z ) e i ϕ ( n ) δ ( ω + ω m + 2 α z ) } + j 1 , 2 δ ( ω + 2 α z ) ]
× e i β x e i 2 ( k 0 + α ε ) z .
I ˜ h 0 = j 1 , 2 * e i β x e i 2 ( k 0 + α ε ) z
I ˜ h ( + 1 ) = J 1 ( A 0 ) j 1 , 1 * e i ϕ ( n ) e i β x e i 2 ( k 0 + α ε ) z
I ˜ h ( 1 ) = J 1 ( A 0 ) j 1 , 1 * e i ϕ ( n ) e i β x e i 2 ( k 0 + α ε ) z .
I ˜ h 0 ( z , n ) I ˜ h 0 ( z , 0 ) = e i 2 α ( ε ( n ) ε ( 0 ) ) z e i β ( x ( n ) x ( 0 ) ) ,
( I ˜ h ( + 1 ) ( n ) I ˜ h 0 ( n ) ) ( I ˜ h ( + 1 ) ( 0 ) I ˜ h 0 ( 0 ) ) = e i ( ϕ ( n ) ϕ ( 0 ) ) .
x ν t ω [ H ref ( t ) H sam * ( t ) ]
= [ J 1 ( A 0 ) j 1 , 1 * { e i ϕ ( 0 ) δ ( ω ω m 2 α z , ν β ) e i ϕ ( 0 ) δ ( ω + ω m 2 α z , ν β ) }
+ j 1 , 2 * δ ( ω 2 α z , ν β ) ] e i 2 ( k 0 + α ε ) z
x ν t ω [ H ref * ( t ) H sam ( t ) ]
= [ + J 1 ( A 0 ) j 1 , 1 { e i ϕ ( 0 ) δ ( ω ω m + 2 α z , ν + β ) e i ϕ ( 0 ) δ ( ω + ω m + 2 α z , ν + β ) }
+ j 1 , 2 δ ( ω + 2 α z , ν + β ) ] e i 2 ( k 0 + α ε ) z .
( I ˜ h ( 1 ) ( z mirror ) I ˜ h 0 ( z mirror ) ) ( I ˜ h ( + 1 ) ( z glass ) I ˜ h 0 ( z glass ) ) = e i 2 ϕ ( 0 ) .
[ I ˜ h ( + 1 ) * I ˜ h 0 * I ˜ v ( + 1 ) * I ˜ v 0 * ] = [ I ˜ h ( 1 ) * I ˜ h 0 * I ˜ v ( 1 ) * I ˜ v 0 * ] = e 2 i ( k 0 + α ε ( 0 ) ) z J all .
λ 1 = T 2 + T 2 4 D
λ 2 = T 2 T 2 4 D ,
[ λ 1 d b ] , [ λ 2 d b ] .

Metrics