Abstract

We present a further improvement of our SLO/OCT imaging system which enables to practically eliminate all eye motion artifacts with a correction accuracy approaching sub-cellular dimensions. Axial eye tracking is achieved by using a hardware based, high speed tracking system that consists of a rapid scanning optical delay line in the reference arm of the interferometer. A software based algorithm is employed to correct for transverse eye motion in a post-processing step. The instrument operates at a frame rate of 40 en-face fps with a field of view of ~1°x1°. Dynamic focusing enables the recording of 3D volumes of the human retina with cellular resolution throughout the entire imaging depth. Several volumes are stitched together to increase the total field of view. Different features of the three dimensional structure of cone photoreceptors are investigated in detail and at different eccentricities from the fovea.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. J. van Velthoven, D. J. Faber, F. D. Verbraak, T. G. van Leeuwen, and M. D. de Smet, “Recent developments in optical coherence tomography for imaging the retina,” Prog. Retin. Eye Res. 26(1), 57–77 (2007).
    [CrossRef]
  2. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
    [CrossRef]
  3. A. G. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27(4), 464–499 (2008).
    [CrossRef] [PubMed]
  4. U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005).
    [CrossRef] [PubMed]
  5. T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: Ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123(12), 1715–1720 (2005).
    [CrossRef] [PubMed]
  6. S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113(8), 1425–1431 (2006).
    [CrossRef] [PubMed]
  7. V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113(11), 2054–2065.e3 (2006).
    [CrossRef] [PubMed]
  8. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
    [CrossRef] [PubMed]
  9. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [CrossRef]
  10. M. Pircher and R. Zawadzki, “Combining adaptive optics with optical coherence tomography: Unveiling the cellular structure of the human retina in vivo,” Expert Rev. Ophthalmol. 2(6), 1019 (2007).
    [CrossRef]
  11. J. Liang, D. R. Williams, and D. T. Miller, “High resolution imaging of the living human retina with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 38, 55–55 (1997).
  12. D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn, “Coherence gating and adaptive optics in the Eye,” Proc. SPIE 4956, 65–72 (2003).
    [CrossRef]
  13. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  14. C. Torti, B. Povazay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009).
    [CrossRef] [PubMed]
  15. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
    [CrossRef] [PubMed]
  16. M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, “Retinal cone mosaic imaged with transverse scanning optical coherence tomography,” Opt. Lett. 31(12), 1821–1823 (2006).
    [CrossRef] [PubMed]
  17. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express 15(25), 16922–16932 (2007).
    [CrossRef] [PubMed]
  18. M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11(5), 054013 (2006).
    [CrossRef] [PubMed]
  19. M. Pircher, B. Baumann, H. Sattman, E. Gotzinger, and C. K. Hitzenberger, “High speed, high resolution SLO/OCT for investigating temporal changes of single cone photoreceptors in vivo,” Proc. SPIE 7372, 13 (2009).
  20. C. K. Hitzenberger, “Measurement of Corneal Thickness by Low-Coherence Interferometry,” Appl. Opt. 31(31), 6637–6642 (1992).
    [CrossRef] [PubMed]
  21. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).
    [CrossRef]
  22. W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: Differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci. 39(11), 2140–2147 (1998).
    [PubMed]
  23. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
    [CrossRef] [PubMed]
  24. B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. H. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17(5), 4095–4111 (2009).
    [CrossRef] [PubMed]
  25. J. I. Yellott., “Spectral Analysis of Spatial Sampling by Photoreceptors: Topological Disorder Prevents Aliasing,” Vision Res. 22(9), 1205–1210 (1982).
    [CrossRef] [PubMed]
  26. N. J. Coletta and D. R. Williams, “Psychophysical Estimate of Extrafoveal Cone Spacing,” Journal. of the Optical Society of America. a-Optics Image,” Science and Vision. 4, 1503–1513 (1987).
  27. M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett. 33(1), 22–24 (2008).
    [CrossRef]
  28. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
    [CrossRef] [PubMed]
  29. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
    [CrossRef] [PubMed]
  30. D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36(8), 1067–1079 (1996).
    [CrossRef] [PubMed]
  31. A. R. Wade and F. W. Fitzke, “In-vivo imaging of the human cone photoreceptor mosaic using a confocal LSO,” Lasers and Light in Ophthalmology 8, 129–136 (1998).
  32. F. M. de Monasterio, E. P. McCrane, J. K. Newlander, and S. J. Schein, “Density Profile of Blue-Sensitive Cones Along the Horizontal Meridian of Macaque Retina,” Invest. Ophthalmol. Vis. Sci. 26(3), 289–302 (1985).
    [PubMed]

2009 (4)

2008 (5)

2007 (3)

M. Pircher and R. Zawadzki, “Combining adaptive optics with optical coherence tomography: Unveiling the cellular structure of the human retina in vivo,” Expert Rev. Ophthalmol. 2(6), 1019 (2007).
[CrossRef]

M. E. J. van Velthoven, D. J. Faber, F. D. Verbraak, T. G. van Leeuwen, and M. D. de Smet, “Recent developments in optical coherence tomography for imaging the retina,” Prog. Retin. Eye Res. 26(1), 57–77 (2007).
[CrossRef]

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express 15(25), 16922–16932 (2007).
[CrossRef] [PubMed]

2006 (5)

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, “Retinal cone mosaic imaged with transverse scanning optical coherence tomography,” Opt. Lett. 31(12), 1821–1823 (2006).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11(5), 054013 (2006).
[CrossRef] [PubMed]

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113(8), 1425–1431 (2006).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113(11), 2054–2065.e3 (2006).
[CrossRef] [PubMed]

2005 (2)

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005).
[CrossRef] [PubMed]

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: Ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123(12), 1715–1720 (2005).
[CrossRef] [PubMed]

2003 (1)

D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn, “Coherence gating and adaptive optics in the Eye,” Proc. SPIE 4956, 65–72 (2003).
[CrossRef]

1999 (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[CrossRef] [PubMed]

1998 (2)

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: Differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci. 39(11), 2140–2147 (1998).
[PubMed]

A. R. Wade and F. W. Fitzke, “In-vivo imaging of the human cone photoreceptor mosaic using a confocal LSO,” Lasers and Light in Ophthalmology 8, 129–136 (1998).

1997 (3)

1996 (1)

D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36(8), 1067–1079 (1996).
[CrossRef] [PubMed]

1992 (1)

1990 (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

1987 (1)

N. J. Coletta and D. R. Williams, “Psychophysical Estimate of Extrafoveal Cone Spacing,” Journal. of the Optical Society of America. a-Optics Image,” Science and Vision. 4, 1503–1513 (1987).

1985 (1)

F. M. de Monasterio, E. P. McCrane, J. K. Newlander, and S. J. Schein, “Density Profile of Blue-Sensitive Cones Along the Horizontal Meridian of Macaque Retina,” Invest. Ophthalmol. Vis. Sci. 26(3), 289–302 (1985).
[PubMed]

1982 (1)

J. I. Yellott., “Spectral Analysis of Spatial Sampling by Photoreceptors: Topological Disorder Prevents Aliasing,” Vision Res. 22(9), 1205–1210 (1982).
[CrossRef] [PubMed]

Ahlers, C.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005).
[CrossRef] [PubMed]

Ahnelt, P. K.

Alam, S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113(8), 1425–1431 (2006).
[CrossRef] [PubMed]

Baumann, B.

Bouma, B. E.

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: Ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123(12), 1715–1720 (2005).
[CrossRef] [PubMed]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).
[CrossRef]

Brown, J. M.

Cable, A.

Carroll, J.

Carvalho, M.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113(11), 2054–2065.e3 (2006).
[CrossRef] [PubMed]

Cense, B.

Chen, T. C.

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: Ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123(12), 1715–1720 (2005).
[CrossRef] [PubMed]

Chen, Y. L.

Choi, S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113(8), 1425–1431 (2006).
[CrossRef] [PubMed]

Choi, S. S.

Coletta, N. J.

N. J. Coletta and D. R. Williams, “Psychophysical Estimate of Extrafoveal Cone Spacing,” Journal. of the Optical Society of America. a-Optics Image,” Science and Vision. 4, 1503–1513 (1987).

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

de Boer, J. F.

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: Ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123(12), 1715–1720 (2005).
[CrossRef] [PubMed]

de Monasterio, F. M.

F. M. de Monasterio, E. P. McCrane, J. K. Newlander, and S. J. Schein, “Density Profile of Blue-Sensitive Cones Along the Horizontal Meridian of Macaque Retina,” Invest. Ophthalmol. Vis. Sci. 26(3), 289–302 (1985).
[PubMed]

de Smet, M. D.

M. E. J. van Velthoven, D. J. Faber, F. D. Verbraak, T. G. van Leeuwen, and M. D. de Smet, “Recent developments in optical coherence tomography for imaging the retina,” Prog. Retin. Eye Res. 26(1), 57–77 (2007).
[CrossRef]

Drexler, W.

C. Torti, B. Povazay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009).
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
[CrossRef]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005).
[CrossRef] [PubMed]

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: Differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci. 39(11), 2140–2147 (1998).
[PubMed]

Duker, J. S.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113(11), 2054–2065.e3 (2006).
[CrossRef] [PubMed]

Evans, J. W.

Faber, D. J.

M. E. J. van Velthoven, D. J. Faber, F. D. Verbraak, T. G. van Leeuwen, and M. D. de Smet, “Recent developments in optical coherence tomography for imaging the retina,” Prog. Retin. Eye Res. 26(1), 57–77 (2007).
[CrossRef]

Fercher, A. F.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005).
[CrossRef] [PubMed]

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: Differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci. 39(11), 2140–2147 (1998).
[PubMed]

Findl, O.

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: Differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci. 39(11), 2140–2147 (1998).
[PubMed]

Fitzke, F. W.

A. R. Wade and F. W. Fitzke, “In-vivo imaging of the human cone photoreceptor mosaic using a confocal LSO,” Lasers and Light in Ophthalmology 8, 129–136 (1998).

Fujimoto, J. G.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
[CrossRef]

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113(11), 2054–2065.e3 (2006).
[CrossRef] [PubMed]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).
[CrossRef]

Gao, W.

Gao, W. H.

Gerth, C.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113(8), 1425–1431 (2006).
[CrossRef] [PubMed]

Gorczynska, I.

Gotzinger, E.

M. Pircher, B. Baumann, H. Sattman, E. Gotzinger, and C. K. Hitzenberger, “High speed, high resolution SLO/OCT for investigating temporal changes of single cone photoreceptors in vivo,” Proc. SPIE 7372, 13 (2009).

M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11(5), 054013 (2006).
[CrossRef] [PubMed]

Götzinger, E.

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

Hermann, B.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005).
[CrossRef] [PubMed]

Hitzenberger, C. K.

M. Pircher, B. Baumann, H. Sattman, E. Gotzinger, and C. K. Hitzenberger, “High speed, high resolution SLO/OCT for investigating temporal changes of single cone photoreceptors in vivo,” Proc. SPIE 7372, 13 (2009).

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett. 33(1), 22–24 (2008).
[CrossRef]

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express 15(25), 16922–16932 (2007).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, “Retinal cone mosaic imaged with transverse scanning optical coherence tomography,” Opt. Lett. 31(12), 1821–1823 (2006).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11(5), 054013 (2006).
[CrossRef] [PubMed]

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: Differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci. 39(11), 2140–2147 (1998).
[PubMed]

C. K. Hitzenberger, “Measurement of Corneal Thickness by Low-Coherence Interferometry,” Appl. Opt. 31(31), 6637–6642 (1992).
[CrossRef] [PubMed]

Hofer, B.

Jiang, J.

Jones, S.

Jonnal, R. S.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

Ko, T. H.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113(11), 2054–2065.e3 (2006).
[CrossRef] [PubMed]

Kocaoglu, O. P.

Kolbitsch, C.

Koperda, E.

Kowalczyk, A.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113(11), 2054–2065.e3 (2006).
[CrossRef] [PubMed]

Leitgeb, R. A.

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005).
[CrossRef] [PubMed]

Liang, J.

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[CrossRef]

J. Liang, D. R. Williams, and D. T. Miller, “High resolution imaging of the living human retina with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 38, 55–55 (1997).

D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36(8), 1067–1079 (1996).
[CrossRef] [PubMed]

McCrane, E. P.

F. M. de Monasterio, E. P. McCrane, J. K. Newlander, and S. J. Schein, “Density Profile of Blue-Sensitive Cones Along the Horizontal Meridian of Macaque Retina,” Invest. Ophthalmol. Vis. Sci. 26(3), 289–302 (1985).
[PubMed]

Michels, S.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005).
[CrossRef] [PubMed]

Miller, D. T.

B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. H. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17(5), 4095–4111 (2009).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
[CrossRef] [PubMed]

D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn, “Coherence gating and adaptive optics in the Eye,” Proc. SPIE 4956, 65–72 (2003).
[CrossRef]

J. Liang, D. R. Williams, and D. T. Miller, “High resolution imaging of the living human retina with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 38, 55–55 (1997).

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36(8), 1067–1079 (1996).
[CrossRef] [PubMed]

Morris, G. M.

D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36(8), 1067–1079 (1996).
[CrossRef] [PubMed]

Morse, L.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113(8), 1425–1431 (2006).
[CrossRef] [PubMed]

Nassif, N.

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: Ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123(12), 1715–1720 (2005).
[CrossRef] [PubMed]

Newlander, J. K.

F. M. de Monasterio, E. P. McCrane, J. K. Newlander, and S. J. Schein, “Density Profile of Blue-Sensitive Cones Along the Horizontal Meridian of Macaque Retina,” Invest. Ophthalmol. Vis. Sci. 26(3), 289–302 (1985).
[PubMed]

Olivier, S.

Park, B. H.

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: Ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123(12), 1715–1720 (2005).
[CrossRef] [PubMed]

Park, S. S.

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113(8), 1425–1431 (2006).
[CrossRef] [PubMed]

Pierce, M. C.

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: Ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123(12), 1715–1720 (2005).
[CrossRef] [PubMed]

Pircher, M.

M. Pircher, B. Baumann, H. Sattman, E. Gotzinger, and C. K. Hitzenberger, “High speed, high resolution SLO/OCT for investigating temporal changes of single cone photoreceptors in vivo,” Proc. SPIE 7372, 13 (2009).

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, “Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography,” Opt. Lett. 33(1), 22–24 (2008).
[CrossRef]

M. Pircher and R. Zawadzki, “Combining adaptive optics with optical coherence tomography: Unveiling the cellular structure of the human retina in vivo,” Expert Rev. Ophthalmol. 2(6), 1019 (2007).
[CrossRef]

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express 15(25), 16922–16932 (2007).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, and C. K. Hitzenberger, “Retinal cone mosaic imaged with transverse scanning optical coherence tomography,” Opt. Lett. 31(12), 1821–1823 (2006).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11(5), 054013 (2006).
[CrossRef] [PubMed]

Podoleanu, A. G.

A. G. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27(4), 464–499 (2008).
[CrossRef] [PubMed]

Potsaid, B.

Povazay, B.

C. Torti, B. Povazay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009).
[CrossRef] [PubMed]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005).
[CrossRef] [PubMed]

Qu, J.

D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn, “Coherence gating and adaptive optics in the Eye,” Proc. SPIE 4956, 65–72 (2003).
[CrossRef]

Rha, J.

Roorda, A.

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[CrossRef] [PubMed]

Rosen, R. B.

A. G. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27(4), 464–499 (2008).
[CrossRef] [PubMed]

Sacu, S.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005).
[CrossRef] [PubMed]

Sattman, H.

M. Pircher, B. Baumann, H. Sattman, E. Gotzinger, and C. K. Hitzenberger, “High speed, high resolution SLO/OCT for investigating temporal changes of single cone photoreceptors in vivo,” Proc. SPIE 7372, 13 (2009).

Sattmann, H.

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express 15(25), 16922–16932 (2007).
[CrossRef] [PubMed]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005).
[CrossRef] [PubMed]

Schein, S. J.

F. M. de Monasterio, E. P. McCrane, J. K. Newlander, and S. J. Schein, “Density Profile of Blue-Sensitive Cones Along the Horizontal Meridian of Macaque Retina,” Invest. Ophthalmol. Vis. Sci. 26(3), 289–302 (1985).
[PubMed]

Schmetterer, L.

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: Differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci. 39(11), 2140–2147 (1998).
[PubMed]

Schmidt-Erfurth, U.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005).
[CrossRef] [PubMed]

Schmoll, T.

Scholda, C.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005).
[CrossRef] [PubMed]

Schuman, J. S.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113(11), 2054–2065.e3 (2006).
[CrossRef] [PubMed]

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

Srinivasan, V. J.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113(11), 2054–2065.e3 (2006).
[CrossRef] [PubMed]

Tearney, G. J.

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: Ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123(12), 1715–1720 (2005).
[CrossRef] [PubMed]

G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22(23), 1811–1813 (1997).
[CrossRef]

Thorn, K.

D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn, “Coherence gating and adaptive optics in the Eye,” Proc. SPIE 4956, 65–72 (2003).
[CrossRef]

Torti, C.

Unterhuber, A.

van Leeuwen, T. G.

M. E. J. van Velthoven, D. J. Faber, F. D. Verbraak, T. G. van Leeuwen, and M. D. de Smet, “Recent developments in optical coherence tomography for imaging the retina,” Prog. Retin. Eye Res. 26(1), 57–77 (2007).
[CrossRef]

van Velthoven, M. E. J.

M. E. J. van Velthoven, D. J. Faber, F. D. Verbraak, T. G. van Leeuwen, and M. D. de Smet, “Recent developments in optical coherence tomography for imaging the retina,” Prog. Retin. Eye Res. 26(1), 57–77 (2007).
[CrossRef]

Verbraak, F. D.

M. E. J. van Velthoven, D. J. Faber, F. D. Verbraak, T. G. van Leeuwen, and M. D. de Smet, “Recent developments in optical coherence tomography for imaging the retina,” Prog. Retin. Eye Res. 26(1), 57–77 (2007).
[CrossRef]

Wade, A. R.

A. R. Wade and F. W. Fitzke, “In-vivo imaging of the human cone photoreceptor mosaic using a confocal LSO,” Lasers and Light in Ophthalmology 8, 129–136 (1998).

Werner, J. S.

White, B. R.

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: Ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123(12), 1715–1720 (2005).
[CrossRef] [PubMed]

Williams, D. R.

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[CrossRef] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “High resolution imaging of the living human retina with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 38, 55–55 (1997).

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36(8), 1067–1079 (1996).
[CrossRef] [PubMed]

N. J. Coletta and D. R. Williams, “Psychophysical Estimate of Extrafoveal Cone Spacing,” Journal. of the Optical Society of America. a-Optics Image,” Science and Vision. 4, 1503–1513 (1987).

Witkin, A. J.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113(11), 2054–2065.e3 (2006).
[CrossRef] [PubMed]

Wojtkowski, M.

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113(11), 2054–2065.e3 (2006).
[CrossRef] [PubMed]

Yellott, J. I.

J. I. Yellott., “Spectral Analysis of Spatial Sampling by Photoreceptors: Topological Disorder Prevents Aliasing,” Vision Res. 22(9), 1205–1210 (1982).
[CrossRef] [PubMed]

Yun, S. H.

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: Ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123(12), 1715–1720 (2005).
[CrossRef] [PubMed]

Zawadzki, R.

M. Pircher and R. Zawadzki, “Combining adaptive optics with optical coherence tomography: Unveiling the cellular structure of the human retina in vivo,” Expert Rev. Ophthalmol. 2(6), 1019 (2007).
[CrossRef]

Zawadzki, R. J.

Zhang, Y.

Appl. Opt. (1)

Arch. Ophthalmol. (1)

T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Spectral domain optical coherence tomography: Ultra-high speed, ultra-high resolution ophthalmic imaging,” Arch. Ophthalmol. 123(12), 1715–1720 (2005).
[CrossRef] [PubMed]

Expert Rev. Ophthalmol. (1)

M. Pircher and R. Zawadzki, “Combining adaptive optics with optical coherence tomography: Unveiling the cellular structure of the human retina in vivo,” Expert Rev. Ophthalmol. 2(6), 1019 (2007).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (4)

J. Liang, D. R. Williams, and D. T. Miller, “High resolution imaging of the living human retina with adaptive optics,” Invest. Ophthalmol. Vis. Sci. 38, 55–55 (1997).

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases,” Invest. Ophthalmol. Vis. Sci. 46(9), 3393–3402 (2005).
[CrossRef] [PubMed]

W. Drexler, O. Findl, L. Schmetterer, C. K. Hitzenberger, and A. F. Fercher, “Eye elongation during accommodation in humans: Differences between emmetropes and myopes,” Invest. Ophthalmol. Vis. Sci. 39(11), 2140–2147 (1998).
[PubMed]

F. M. de Monasterio, E. P. McCrane, J. K. Newlander, and S. J. Schein, “Density Profile of Blue-Sensitive Cones Along the Horizontal Meridian of Macaque Retina,” Invest. Ophthalmol. Vis. Sci. 26(3), 289–302 (1985).
[PubMed]

J. Biomed. Opt. (1)

M. Pircher, E. Gotzinger, and C. K. Hitzenberger, “Dynamic focus in optical coherence tomography for retinal imaging,” J. Biomed. Opt. 11(5), 054013 (2006).
[CrossRef] [PubMed]

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292(4), 497–523 (1990).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Lasers and Light in Ophthalmology (1)

A. R. Wade and F. W. Fitzke, “In-vivo imaging of the human cone photoreceptor mosaic using a confocal LSO,” Lasers and Light in Ophthalmology 8, 129–136 (1998).

Nature (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[CrossRef] [PubMed]

Ophthalmology (2)

S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, “Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging,” Ophthalmology 113(8), 1425–1431 (2006).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, “High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 113(11), 2054–2065.e3 (2006).
[CrossRef] [PubMed]

Opt. Express (7)

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express 15(25), 16922–16932 (2007).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

C. Torti, B. Povazay, B. Hofer, A. Unterhuber, J. Carroll, P. K. Ahnelt, and W. Drexler, “Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina,” Opt. Express 17(22), 19382–19400 (2009).
[CrossRef] [PubMed]

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, “High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography,” Opt. Express 14(10), 4380–4394 (2006).
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
[CrossRef] [PubMed]

B. Cense, E. Koperda, J. M. Brown, O. P. Kocaoglu, W. H. Gao, R. S. Jonnal, and D. T. Miller, “Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources,” Opt. Express 17(5), 4095–4111 (2009).
[CrossRef] [PubMed]

Opt. Lett. (3)

Proc. SPIE (2)

M. Pircher, B. Baumann, H. Sattman, E. Gotzinger, and C. K. Hitzenberger, “High speed, high resolution SLO/OCT for investigating temporal changes of single cone photoreceptors in vivo,” Proc. SPIE 7372, 13 (2009).

D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn, “Coherence gating and adaptive optics in the Eye,” Proc. SPIE 4956, 65–72 (2003).
[CrossRef]

Prog. Retin. Eye Res. (3)

M. E. J. van Velthoven, D. J. Faber, F. D. Verbraak, T. G. van Leeuwen, and M. D. de Smet, “Recent developments in optical coherence tomography for imaging the retina,” Prog. Retin. Eye Res. 26(1), 57–77 (2007).
[CrossRef]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
[CrossRef]

A. G. Podoleanu and R. B. Rosen, “Combinations of techniques in imaging the retina with high resolution,” Prog. Retin. Eye Res. 27(4), 464–499 (2008).
[CrossRef] [PubMed]

Science and Vision. (1)

N. J. Coletta and D. R. Williams, “Psychophysical Estimate of Extrafoveal Cone Spacing,” Journal. of the Optical Society of America. a-Optics Image,” Science and Vision. 4, 1503–1513 (1987).

Vision Res. (2)

J. I. Yellott., “Spectral Analysis of Spatial Sampling by Photoreceptors: Topological Disorder Prevents Aliasing,” Vision Res. 22(9), 1205–1210 (1982).
[CrossRef] [PubMed]

D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36(8), 1067–1079 (1996).
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: MOV (7387 KB)     
» Media 2: MOV (11526 KB)     
» Media 3: MOV (285 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Scheme of the SLO/OCT instrument. RSOD rapid scanning optical delay line, SD-LCI spectral domain low coherence interferometer, LS light source, P polarizer, DC dispersion compensation glass rods, BS beam splitter, L1-L4 lenses (L1 f = 50mm, L2 f = 20mm, L3 f = 40mm, L4 f = 80mm), AOM acousto optic modulator, TS translation stage, PBS polarizing beam splitter, DM dichroic mirror, RM reference mirror, DG diffraction grating, Pe Pellicle, GS galvo scanner, x-y scanning unit consists of a resonant scanner and a galvo scanner. (Imaging optics between the two scanning mirrors are omitted for clarity)

Fig. 2
Fig. 2

(Media 1) Frame number 65 of a movie retrieved from a 3D data set recorded with the instrument. The movie starts from the anterior part of the retina to the posterior part. Field of view: ~5°x1°. Imaging depth: ~393µm (in tissue). Images are represented in a logarithmic intensity scale.

Fig. 3
Fig. 3

(Media 2) Frame number 50 of a movie retrieved from the same data set as in Fig. 2. The movie starts from the inferior part of the retina to the superior part. Image size: 5° x 393µm (in tissue) Images are represented in a logarithmic intensity scale.

Fig. 4
Fig. 4

Images of the human cone mosaic at ~4deg eccentricity. a) Overview B-scan image. ELM external limiting membrane, IS/OS junction between inner and outer segments of photoreceptors, OS outer segments photoreceptors, ETPR end tips photoreceptors, RPE retinal pigment epithelium. b) en-face image retrieved from the IS/OS junction, c) en-face image within OS (three bright reflection sites are marked with a circle), d) en-face image at ETPR, e) representative B-scan of the cone photoreceptors (bright reflection site is marked with a circle, a) is plotted in logarithmic scale, b) c) d) e) are plotted in a linear scale).

Fig. 5
Fig. 5

Measurement series of the same location on the retina recorded within 5 minutes. Upper row: SLO images, middle row: representative B-scan images (location marked with a white line in the lower rows). The bright layers within the B-scan images are (from top to bottom) IS/OS junction between inner and outer segments of photoreceptors, ETPR end tips of photoreceptors, RPE retinal pigment epithelium (hardly visible in the linear scale). Lower row: Over the whole imaging depth averaged en-face OCT images.

Fig. 6
Fig. 6

(Media 3) Frame No.3 (corresponding to 2° eccentricity) of a movie showing the calculated FFT’s of the cone mosaic measured in volunteer 2.

Fig. 7
Fig. 7

a) Measured cone density of five volunteers at different eccentricities from the fovea (black line: data from Ref [27]. b) Measured bright reflections (BR) within the cone outer segments at different eccentricities (Each color corresponds to a different subject).

Fig. 8
Fig. 8

The cone mosaic imaged at 2 degrees eccentricity from the fovea. a) depth integrated OCT image, b) SLO image (field of view: ~1°x1°).

Fig. 9
Fig. 9

Different arrangements of BR (marked with an ellipse) observed at 4° eccentricity (see text for explanation).

Metrics