Abstract

We propose and demonstrate experimentally a laser source whose linewidth is adjustable independently of its other characteristics. This source can be used to test whether a particular laser would be suitable in a system, without the need to purchase several different lasers. It also has the advantage that the linewidth is generated digitally so it is extremely stable over time. We demonstrate a dialed-linewidth emulator between 256 kHz to 150 MHz. The narrowest linewidth shown by this technique is the original linewidth of the semiconductor laser source used in the setup. We also investigate the effect of driving our modulator into its nonlinear range.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Zan, A. J. Lowery, and M. Premaratne, “Laser RIN and linewidth requirements for direct detection optical OFDM,” in Conference on Lasers and Electro-Optics CLEO 2008 (San Jose, 2008), paper CWN2.
  2. J. A. P. Morgado and A. V. T. Cartaxo, “Assessment of laser noise influence on direct-detection transmission system performance,” J. Lightwave Technol. 21(3), 759–768 (2003).
    [CrossRef]
  3. W. K. Marshall, B. Crosignani, and A. Yariv, “Laser phase noise to intensity noise conversion by lowest-order group velocity dispersion in optical fiber: exact theory,” Opt. Express 23, 165–167 (2000).
  4. P. Laurencio, S. O. Simőes, and M. C. R. Medeiros, “Impact of the combined effect of RIN and intermodulation distortion on OSSB/SCM systems,” J. Lightwave Technol. 24(11), 4250–4262 (2006).
    [CrossRef]
  5. M. Ahmed and M. Yamada, “Effect of intensity noise of semiconductor lasers on the digital modulation characteristics and the bit error rate of optical communication systems,” J. Appl. Phys. 104(1), 013104 (2008).
    [CrossRef]
  6. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 256–259 (1982).
    [CrossRef]
  7. S. Yamamoto, N. Edagawa, H. Taga, and Y. Y. H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical fiber transmission,” J. Lightwave Technol. 8(11), 1716–1722 (1990).
    [CrossRef]
  8. L. Kazovsky, S. Benedetto, and A. Willner, “Laser phase noise model,” in Optical Fiber Communication Systems (Artech House, Inc., Norwood, 1996).
  9. D. Fonseca, A. V. T. Cartaxo, and P. Monteiro, “Optical single-sideband transmitter for various electrical signaling formats,” J. Lightwave Technol. 24(5), 2059–2069 (2006).
    [CrossRef]
  10. D. Derickson, “Laser linewidth characterization,” in Fiber Optic Test and Measurement (Prentice Hall, New Jersey, 1998).
  11. B. J. C. Schmidt, Z. Zan, L. B. Du, and A. J. Lowery, “120 Gbit/s over 500-km using single-band polarization-multiplexed self-coherent optical OFDM,” J. Lightwave Technol. 28(4), 328–335 (2010).
    [CrossRef]
  12. Z. Zan, L. B. Du, and A. J. Lowery, “Experimental demonstration on the reduction of linewidth impact in a self-heterodyne optical OFDM system,” in Optical Fiber Communication Conference (OFC/NFOEC), (OSA), (San Diego 2010), paper JThA8.

2010

2008

M. Ahmed and M. Yamada, “Effect of intensity noise of semiconductor lasers on the digital modulation characteristics and the bit error rate of optical communication systems,” J. Appl. Phys. 104(1), 013104 (2008).
[CrossRef]

2006

2003

2000

W. K. Marshall, B. Crosignani, and A. Yariv, “Laser phase noise to intensity noise conversion by lowest-order group velocity dispersion in optical fiber: exact theory,” Opt. Express 23, 165–167 (2000).

1990

S. Yamamoto, N. Edagawa, H. Taga, and Y. Y. H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical fiber transmission,” J. Lightwave Technol. 8(11), 1716–1722 (1990).
[CrossRef]

1982

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 256–259 (1982).
[CrossRef]

Ahmed, M.

M. Ahmed and M. Yamada, “Effect of intensity noise of semiconductor lasers on the digital modulation characteristics and the bit error rate of optical communication systems,” J. Appl. Phys. 104(1), 013104 (2008).
[CrossRef]

Cartaxo, A. V. T.

Crosignani, B.

W. K. Marshall, B. Crosignani, and A. Yariv, “Laser phase noise to intensity noise conversion by lowest-order group velocity dispersion in optical fiber: exact theory,” Opt. Express 23, 165–167 (2000).

Du, L. B.

Edagawa, N.

S. Yamamoto, N. Edagawa, H. Taga, and Y. Y. H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical fiber transmission,” J. Lightwave Technol. 8(11), 1716–1722 (1990).
[CrossRef]

Fonseca, D.

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 256–259 (1982).
[CrossRef]

Laurencio, P.

Lowery, A. J.

Marshall, W. K.

W. K. Marshall, B. Crosignani, and A. Yariv, “Laser phase noise to intensity noise conversion by lowest-order group velocity dispersion in optical fiber: exact theory,” Opt. Express 23, 165–167 (2000).

Medeiros, M. C. R.

Monteiro, P.

Morgado, J. A. P.

Schmidt, B. J. C.

Simoes, S. O.

Taga, H.

S. Yamamoto, N. Edagawa, H. Taga, and Y. Y. H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical fiber transmission,” J. Lightwave Technol. 8(11), 1716–1722 (1990).
[CrossRef]

Wakabayashi, Y. Y. H.

S. Yamamoto, N. Edagawa, H. Taga, and Y. Y. H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical fiber transmission,” J. Lightwave Technol. 8(11), 1716–1722 (1990).
[CrossRef]

Yamada, M.

M. Ahmed and M. Yamada, “Effect of intensity noise of semiconductor lasers on the digital modulation characteristics and the bit error rate of optical communication systems,” J. Appl. Phys. 104(1), 013104 (2008).
[CrossRef]

Yamamoto, S.

S. Yamamoto, N. Edagawa, H. Taga, and Y. Y. H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical fiber transmission,” J. Lightwave Technol. 8(11), 1716–1722 (1990).
[CrossRef]

Yariv, A.

W. K. Marshall, B. Crosignani, and A. Yariv, “Laser phase noise to intensity noise conversion by lowest-order group velocity dispersion in optical fiber: exact theory,” Opt. Express 23, 165–167 (2000).

Zan, Z.

IEEE J. Quantum Electron.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 256–259 (1982).
[CrossRef]

J. Appl. Phys.

M. Ahmed and M. Yamada, “Effect of intensity noise of semiconductor lasers on the digital modulation characteristics and the bit error rate of optical communication systems,” J. Appl. Phys. 104(1), 013104 (2008).
[CrossRef]

J. Lightwave Technol.

Opt. Express

W. K. Marshall, B. Crosignani, and A. Yariv, “Laser phase noise to intensity noise conversion by lowest-order group velocity dispersion in optical fiber: exact theory,” Opt. Express 23, 165–167 (2000).

Other

Z. Zan, A. J. Lowery, and M. Premaratne, “Laser RIN and linewidth requirements for direct detection optical OFDM,” in Conference on Lasers and Electro-Optics CLEO 2008 (San Jose, 2008), paper CWN2.

D. Derickson, “Laser linewidth characterization,” in Fiber Optic Test and Measurement (Prentice Hall, New Jersey, 1998).

L. Kazovsky, S. Benedetto, and A. Willner, “Laser phase noise model,” in Optical Fiber Communication Systems (Artech House, Inc., Norwood, 1996).

Z. Zan, L. B. Du, and A. J. Lowery, “Experimental demonstration on the reduction of linewidth impact in a self-heterodyne optical OFDM system,” in Optical Fiber Communication Conference (OFC/NFOEC), (OSA), (San Diego 2010), paper JThA8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Phase modulation using: (left) a LiNbO3 phase modulator showing the need for a reset, (right) a complex optical modulator showing how the phase can be driven indefinitely around the complex plane by combining the outputs of the upper (I and lower (Q) modulators.

Fig. 2
Fig. 2

Experimental setup including the emulator and linewidth characterization.

Fig. 3
Fig. 3

HRS linewidth measurement for a dialed linewidth of 20 MHz.

Fig. 4
Fig. 4

20-dB linewidth measurements using a self-heterodyne technique for a 20-MHz dialed linewidth.

Fig. 5
Fig. 5

Experimental results for the measured linewidth vs. the dialed linewidth.

Fig. 6
Fig. 6

Linewidth stability comparison between the dialed linewidth laser and a commercial DFB laser.

Fig. 7
Fig. 7

Complex-plane (I vs.Q) when driving the modulator in its (a) linear and (b) nonlinear regions. (c) RF spectra showing the increase in intensity noise for nonlinear drive.

Fig. 8
Fig. 8

Simulated spectra with and without electrical bandwidth limitation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E o u t = E i n 2 [ sin ( π 2 V I V π ) + j sin ( π 2 V Q V π ) ]
E o u t = E i n π 4 V π ( V I + j V Q )
V I , n = k cos θ n and V Q , n = k sin θ n

Metrics