Abstract

We report a systematic study of the size-related nonlinear optical properties of triangular Au particles. The triangular Au nanoparticle arrays of four sizes (37 nm, 70 nm, 140 nm and 190 nm) were fabricated on quartz substrates using nanosphere lithography. By performing the Z-scan method with femtosecond laser (800 nm, 50 fs), the optical nonlinearities of Au nanoparticle arrays were determined. The results showed a size-related competition between two mechanisms of ground-state bleaching and two-photon absorption. As the size increased, the nonlinear absorption changed from two-photon absorption to saturated absorption, while the nonlinear refraction changed from self-defocusing to self-focusing. These size-tunable nonlinearities make it possible to optimize the one- and two-photon figures of merit, W and T, for all-optical switching.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. . J. T. Seo, Q. G. Yang, W. J. Kim, J. H. Heo, S. M. Ma, J. Austin, W. S. Yun, S. S. Jung, S. W. Han, B. Tabibi and D. Temple, “Optical nonlinearities of Au nanoparticles and Au/Ag coreshells.” Opt. Lett. 34, 307–309 (2009).
    [CrossRef] [PubMed]
  2. . D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Watersoluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
    [CrossRef] [PubMed]
  3. . G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Sp¨alter, R. E. Slusher, and S.-W. Cheong, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000).
    [CrossRef]
  4. . A. Samoc, M. Samoc, M. Woodruff, and B. Luther-Davies, “Tuning the properties of poly(p-phenylenevinylene) for use in all-optical switching,” Opt. Lett. 20, 1241–1243 (1995).
    [CrossRef] [PubMed]
  5. . Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16, 2405–2408 (2006).
    [CrossRef]
  6. . N. Kamaraju, S. Kumar, B. Karthikeyan, A. Moravsky, R. O. Loutfy, and A. K. Sood, “Ultrafast electron dynamics and cubic optical nonlinearity of freestanding thin film of double walled carbon nanotubes,” Appl. Phys. Lett. 93, 091903–091903-3 (2008).
    [CrossRef]
  7. . N. Kamaraju, S. Kumar, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, and A. K. Sood, “Double walled carbon nanotubes as ultrafast optical switches,” Appl. Phys. Lett. 95, 081106–081106-3 (2009).
    [CrossRef]
  8. . Y. H. Lee, Y. L. Yan, L. Polavarapu, and Q. H. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95, 203105–203105-3 (2009).
    [PubMed]
  9. . K. Wang, H. Long, M. Fu, G. Yang, and P. X. Lu, “Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array,” Opt. Lett. 35, 1560–1562 (2010).
    [CrossRef] [PubMed]
  10. . N. D. Fatti, C. Voisin, F. Chevy, F, Vallée, and C, Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles.,” J. Chem. Phys. 110, 11484–11487 (1999).
    [CrossRef]
  11. . L. A. Gómez, F. E. P.  dos Santos, A. S. L. Gomes, C. B. de Araújo, L. R. P. Kassab, and W. G. Hora, “Nearinfrared third-order nonlinearity of PbO-GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92, 141916–141916-3 (2009).
  12. . N. Venkatram, R. Sathyavathi and D. N. Rao, “Size dependent multiphoton absorption and refraction of CdSe nanoparticles,” Opt. Express 15, 12258–12263 (2007).
    [CrossRef] [PubMed]
  13. . M. S. Neo, N. Venkatram, G. S. Li,W. S. Chin, and J. Wei, “Size-Dependent Optical Nonlinearities and Scattering Properties of PbS Nanoparticles,” J. Phys. Chem. C 113, 19055-19060 (2009).
    [CrossRef]
  14. . L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys. 103, 033105–033015-7 (2008).
    [CrossRef]
  15. . J. K. Anthony, H. C. Kim, H.W. Lee, S. K. Mahapatra, H. M. Lee, C. K. Kim, K. Kim, H. Lim, and F. Rotermund, “Particle size-dependent giant nonlinear absorption in nanostructured Ni-Ti alloys,” Opt. Express 16, 11193-11202 (2008).
    [CrossRef] [PubMed]
  16. . G. H. Ma,W. X. Sun, S. H. Tang, H. Z. Zhang, and Z. X. Shen “Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices,” Opt. Lett. 27, 1043-1045 (2002).
    [CrossRef]
  17. . H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M . Kim, “3rd order nonlinear optical properties of Au : SiO2 nanocomposite films with varying Au particle size,” Phys. Stat. Sol. A-Appl. Mat. Scie. 203, 1211-1216 (2006).
    [CrossRef]
  18. . J. C. Hulteen, R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553–1558 (1995).
    [CrossRef]
  19. . W. Y. Huang, W. Qian, and M. A. El-Sayed “The Optically Detected Coherent Lattice Oscillations in Silver and Gold Monolayer Periodic Nanoprism Arrays: The Effect of Interparicle coupling,” J. Phys. Chem. B 109, 18881–18888 (2005).
    [CrossRef]
  20. . M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E.W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]

2010

2009

. J. T. Seo, Q. G. Yang, W. J. Kim, J. H. Heo, S. M. Ma, J. Austin, W. S. Yun, S. S. Jung, S. W. Han, B. Tabibi and D. Temple, “Optical nonlinearities of Au nanoparticles and Au/Ag coreshells.” Opt. Lett. 34, 307–309 (2009).
[CrossRef] [PubMed]

. N. Kamaraju, S. Kumar, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, and A. K. Sood, “Double walled carbon nanotubes as ultrafast optical switches,” Appl. Phys. Lett. 95, 081106–081106-3 (2009).
[CrossRef]

. Y. H. Lee, Y. L. Yan, L. Polavarapu, and Q. H. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95, 203105–203105-3 (2009).
[PubMed]

. L. A. Gómez, F. E. P.  dos Santos, A. S. L. Gomes, C. B. de Araújo, L. R. P. Kassab, and W. G. Hora, “Nearinfrared third-order nonlinearity of PbO-GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92, 141916–141916-3 (2009).

. M. S. Neo, N. Venkatram, G. S. Li,W. S. Chin, and J. Wei, “Size-Dependent Optical Nonlinearities and Scattering Properties of PbS Nanoparticles,” J. Phys. Chem. C 113, 19055-19060 (2009).
[CrossRef]

2008

. L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys. 103, 033105–033015-7 (2008).
[CrossRef]

. N. Kamaraju, S. Kumar, B. Karthikeyan, A. Moravsky, R. O. Loutfy, and A. K. Sood, “Ultrafast electron dynamics and cubic optical nonlinearity of freestanding thin film of double walled carbon nanotubes,” Appl. Phys. Lett. 93, 091903–091903-3 (2008).
[CrossRef]

. J. K. Anthony, H. C. Kim, H.W. Lee, S. K. Mahapatra, H. M. Lee, C. K. Kim, K. Kim, H. Lim, and F. Rotermund, “Particle size-dependent giant nonlinear absorption in nanostructured Ni-Ti alloys,” Opt. Express 16, 11193-11202 (2008).
[CrossRef] [PubMed]

2007

2006

. Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16, 2405–2408 (2006).
[CrossRef]

2005

. W. Y. Huang, W. Qian, and M. A. El-Sayed “The Optically Detected Coherent Lattice Oscillations in Silver and Gold Monolayer Periodic Nanoprism Arrays: The Effect of Interparicle coupling,” J. Phys. Chem. B 109, 18881–18888 (2005).
[CrossRef]

2003

. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Watersoluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

2002

2000

1999

. N. D. Fatti, C. Voisin, F. Chevy, F, Vallée, and C, Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles.,” J. Chem. Phys. 110, 11484–11487 (1999).
[CrossRef]

1995

. J. C. Hulteen, R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553–1558 (1995).
[CrossRef]

. A. Samoc, M. Samoc, M. Woodruff, and B. Luther-Davies, “Tuning the properties of poly(p-phenylenevinylene) for use in all-optical switching,” Opt. Lett. 20, 1241–1243 (1995).
[CrossRef] [PubMed]

1990

. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E.W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Anthony, J. K.

Austin, J.

Bruchez, M. P.

. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Watersoluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Chen, D. J.

. Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16, 2405–2408 (2006).
[CrossRef]

Cheong, B.

. H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M . Kim, “3rd order nonlinear optical properties of Au : SiO2 nanocomposite films with varying Au particle size,” Phys. Stat. Sol. A-Appl. Mat. Scie. 203, 1211-1216 (2006).
[CrossRef]

Cheong, S.-W.

Chevy, F.

. N. D. Fatti, C. Voisin, F. Chevy, F, Vallée, and C, Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles.,” J. Chem. Phys. 110, 11484–11487 (1999).
[CrossRef]

Chin, W. S.

. M. S. Neo, N. Venkatram, G. S. Li,W. S. Chin, and J. Wei, “Size-Dependent Optical Nonlinearities and Scattering Properties of PbS Nanoparticles,” J. Phys. Chem. C 113, 19055-19060 (2009).
[CrossRef]

Cho, K. M.

. H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M . Kim, “3rd order nonlinear optical properties of Au : SiO2 nanocomposite films with varying Au particle size,” Phys. Stat. Sol. A-Appl. Mat. Scie. 203, 1211-1216 (2006).
[CrossRef]

Clark, S. W.

. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Watersoluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

de Araújo, C. B.

. L. A. Gómez, F. E. P.  dos Santos, A. S. L. Gomes, C. B. de Araújo, L. R. P. Kassab, and W. G. Hora, “Nearinfrared third-order nonlinearity of PbO-GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92, 141916–141916-3 (2009).

Deepthy, A

. L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys. 103, 033105–033015-7 (2008).
[CrossRef]

dos Santos, F. E. P.

. L. A. Gómez, F. E. P.  dos Santos, A. S. L. Gomes, C. B. de Araújo, L. R. P. Kassab, and W. G. Hora, “Nearinfrared third-order nonlinearity of PbO-GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92, 141916–141916-3 (2009).

El-Sayed, M. A.

. W. Y. Huang, W. Qian, and M. A. El-Sayed “The Optically Detected Coherent Lattice Oscillations in Silver and Gold Monolayer Periodic Nanoprism Arrays: The Effect of Interparicle coupling,” J. Phys. Chem. B 109, 18881–18888 (2005).
[CrossRef]

Endo, M.

. N. Kamaraju, S. Kumar, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, and A. K. Sood, “Double walled carbon nanotubes as ultrafast optical switches,” Appl. Phys. Lett. 95, 081106–081106-3 (2009).
[CrossRef]

Fatti, N. D.

. N. D. Fatti, C. Voisin, F. Chevy, F, Vallée, and C, Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles.,” J. Chem. Phys. 110, 11484–11487 (1999).
[CrossRef]

Feng, J. Y.

. Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16, 2405–2408 (2006).
[CrossRef]

Fu, M.

Gomes, A. S. L.

. L. A. Gómez, F. E. P.  dos Santos, A. S. L. Gomes, C. B. de Araújo, L. R. P. Kassab, and W. G. Hora, “Nearinfrared third-order nonlinearity of PbO-GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92, 141916–141916-3 (2009).

Gómez, L. A.

. L. A. Gómez, F. E. P.  dos Santos, A. S. L. Gomes, C. B. de Araújo, L. R. P. Kassab, and W. G. Hora, “Nearinfrared third-order nonlinearity of PbO-GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92, 141916–141916-3 (2009).

Gong, H. M.

. Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16, 2405–2408 (2006).
[CrossRef]

Hagan, D. J.

. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E.W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Han, J. B.

. Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16, 2405–2408 (2006).
[CrossRef]

Han, S. W.

Hayashi, T.

. N. Kamaraju, S. Kumar, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, and A. K. Sood, “Double walled carbon nanotubes as ultrafast optical switches,” Appl. Phys. Lett. 95, 081106–081106-3 (2009).
[CrossRef]

Heo, J. H.

Hora, W. G.

. L. A. Gómez, F. E. P.  dos Santos, A. S. L. Gomes, C. B. de Araújo, L. R. P. Kassab, and W. G. Hora, “Nearinfrared third-order nonlinearity of PbO-GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92, 141916–141916-3 (2009).

Huang, W. Y.

. W. Y. Huang, W. Qian, and M. A. El-Sayed “The Optically Detected Coherent Lattice Oscillations in Silver and Gold Monolayer Periodic Nanoprism Arrays: The Effect of Interparicle coupling,” J. Phys. Chem. B 109, 18881–18888 (2005).
[CrossRef]

Hulteen, J. C.

. J. C. Hulteen, R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553–1558 (1995).
[CrossRef]

Hwang, H. Y.

Irimpan, L.

. L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys. 103, 033105–033015-7 (2008).
[CrossRef]

Jeong, J. H.

. H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M . Kim, “3rd order nonlinear optical properties of Au : SiO2 nanocomposite films with varying Au particle size,” Phys. Stat. Sol. A-Appl. Mat. Scie. 203, 1211-1216 (2006).
[CrossRef]

Jun, H. S.

. H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M . Kim, “3rd order nonlinear optical properties of Au : SiO2 nanocomposite films with varying Au particle size,” Phys. Stat. Sol. A-Appl. Mat. Scie. 203, 1211-1216 (2006).
[CrossRef]

Jung, S. S.

Kamaraju, N.

. N. Kamaraju, S. Kumar, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, and A. K. Sood, “Double walled carbon nanotubes as ultrafast optical switches,” Appl. Phys. Lett. 95, 081106–081106-3 (2009).
[CrossRef]

. N. Kamaraju, S. Kumar, B. Karthikeyan, A. Moravsky, R. O. Loutfy, and A. K. Sood, “Ultrafast electron dynamics and cubic optical nonlinearity of freestanding thin film of double walled carbon nanotubes,” Appl. Phys. Lett. 93, 091903–091903-3 (2008).
[CrossRef]

Karthikeyan, B.

. N. Kamaraju, S. Kumar, B. Karthikeyan, A. Moravsky, R. O. Loutfy, and A. K. Sood, “Ultrafast electron dynamics and cubic optical nonlinearity of freestanding thin film of double walled carbon nanotubes,” Appl. Phys. Lett. 93, 091903–091903-3 (2008).
[CrossRef]

Kassab, L. R. P.

. L. A. Gómez, F. E. P.  dos Santos, A. S. L. Gomes, C. B. de Araújo, L. R. P. Kassab, and W. G. Hora, “Nearinfrared third-order nonlinearity of PbO-GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92, 141916–141916-3 (2009).

Katsufuji, T.

Kim, C. K.

Kim, D. S.

. H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M . Kim, “3rd order nonlinear optical properties of Au : SiO2 nanocomposite films with varying Au particle size,” Phys. Stat. Sol. A-Appl. Mat. Scie. 203, 1211-1216 (2006).
[CrossRef]

Kim, H. C.

Kim, I. H.

. H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M . Kim, “3rd order nonlinear optical properties of Au : SiO2 nanocomposite films with varying Au particle size,” Phys. Stat. Sol. A-Appl. Mat. Scie. 203, 1211-1216 (2006).
[CrossRef]

Kim, K.

Kim, W. J.

Kim, W. M .

. H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M . Kim, “3rd order nonlinear optical properties of Au : SiO2 nanocomposite films with varying Au particle size,” Phys. Stat. Sol. A-Appl. Mat. Scie. 203, 1211-1216 (2006).
[CrossRef]

Kim, Y. A.

. N. Kamaraju, S. Kumar, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, and A. K. Sood, “Double walled carbon nanotubes as ultrafast optical switches,” Appl. Phys. Lett. 95, 081106–081106-3 (2009).
[CrossRef]

Krishnan, B.

. L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys. 103, 033105–033015-7 (2008).
[CrossRef]

Kumar, S.

. N. Kamaraju, S. Kumar, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, and A. K. Sood, “Double walled carbon nanotubes as ultrafast optical switches,” Appl. Phys. Lett. 95, 081106–081106-3 (2009).
[CrossRef]

. N. Kamaraju, S. Kumar, B. Karthikeyan, A. Moravsky, R. O. Loutfy, and A. K. Sood, “Ultrafast electron dynamics and cubic optical nonlinearity of freestanding thin film of double walled carbon nanotubes,” Appl. Phys. Lett. 93, 091903–091903-3 (2008).
[CrossRef]

Larson, D. R.

. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Watersoluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Lee, H. M.

Lee, H.W.

Lee, K. S.

. H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M . Kim, “3rd order nonlinear optical properties of Au : SiO2 nanocomposite films with varying Au particle size,” Phys. Stat. Sol. A-Appl. Mat. Scie. 203, 1211-1216 (2006).
[CrossRef]

Lee, T. S.

. H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M . Kim, “3rd order nonlinear optical properties of Au : SiO2 nanocomposite films with varying Au particle size,” Phys. Stat. Sol. A-Appl. Mat. Scie. 203, 1211-1216 (2006).
[CrossRef]

Lee, Y. H.

. Y. H. Lee, Y. L. Yan, L. Polavarapu, and Q. H. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95, 203105–203105-3 (2009).
[PubMed]

Lenz, G.

Li, G. S.

. M. S. Neo, N. Venkatram, G. S. Li,W. S. Chin, and J. Wei, “Size-Dependent Optical Nonlinearities and Scattering Properties of PbS Nanoparticles,” J. Phys. Chem. C 113, 19055-19060 (2009).
[CrossRef]

Lim, H.

Lines, M. E.

Long, H.

Loutfy, R. O.

. N. Kamaraju, S. Kumar, B. Karthikeyan, A. Moravsky, R. O. Loutfy, and A. K. Sood, “Ultrafast electron dynamics and cubic optical nonlinearity of freestanding thin film of double walled carbon nanotubes,” Appl. Phys. Lett. 93, 091903–091903-3 (2008).
[CrossRef]

Lu, P. X.

Luther-Davies, B.

Ma, G. H.

Ma, S. M.

Mahapatra, S. K.

Moravsky, A.

. N. Kamaraju, S. Kumar, B. Karthikeyan, A. Moravsky, R. O. Loutfy, and A. K. Sood, “Ultrafast electron dynamics and cubic optical nonlinearity of freestanding thin film of double walled carbon nanotubes,” Appl. Phys. Lett. 93, 091903–091903-3 (2008).
[CrossRef]

Muramatsu, H.

. N. Kamaraju, S. Kumar, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, and A. K. Sood, “Double walled carbon nanotubes as ultrafast optical switches,” Appl. Phys. Lett. 95, 081106–081106-3 (2009).
[CrossRef]

Nampoori, V. P. N.

. L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys. 103, 033105–033015-7 (2008).
[CrossRef]

Neo, M. S.

. M. S. Neo, N. Venkatram, G. S. Li,W. S. Chin, and J. Wei, “Size-Dependent Optical Nonlinearities and Scattering Properties of PbS Nanoparticles,” J. Phys. Chem. C 113, 19055-19060 (2009).
[CrossRef]

Polavarapu, L.

. Y. H. Lee, Y. L. Yan, L. Polavarapu, and Q. H. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95, 203105–203105-3 (2009).
[PubMed]

Qian, W.

. W. Y. Huang, W. Qian, and M. A. El-Sayed “The Optically Detected Coherent Lattice Oscillations in Silver and Gold Monolayer Periodic Nanoprism Arrays: The Effect of Interparicle coupling,” J. Phys. Chem. B 109, 18881–18888 (2005).
[CrossRef]

Radhakrishnan, P.

. L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys. 103, 033105–033015-7 (2008).
[CrossRef]

Rao, D. N.

Ren, J. J.

. Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16, 2405–2408 (2006).
[CrossRef]

Rotermund, F.

Said, A. A.

. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E.W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Samoc, A.

Samoc, M.

Sathyavathi, R.

Seo, J. T.

Sheik-Bahae, M.

. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E.W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Shen, Z. X.

Slusher, R. E.

Sood, A. K.

. N. Kamaraju, S. Kumar, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, and A. K. Sood, “Double walled carbon nanotubes as ultrafast optical switches,” Appl. Phys. Lett. 95, 081106–081106-3 (2009).
[CrossRef]

. N. Kamaraju, S. Kumar, B. Karthikeyan, A. Moravsky, R. O. Loutfy, and A. K. Sood, “Ultrafast electron dynamics and cubic optical nonlinearity of freestanding thin film of double walled carbon nanotubes,” Appl. Phys. Lett. 93, 091903–091903-3 (2008).
[CrossRef]

Sp¨alter, S.

Sun, W. X.

Tabibi, B.

Tang, S. H.

Temple, D.

Van Duyne, R. P.

. J. C. Hulteen, R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553–1558 (1995).
[CrossRef]

Van Stryland, E.W.

. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E.W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Venkatram, N.

. M. S. Neo, N. Venkatram, G. S. Li,W. S. Chin, and J. Wei, “Size-Dependent Optical Nonlinearities and Scattering Properties of PbS Nanoparticles,” J. Phys. Chem. C 113, 19055-19060 (2009).
[CrossRef]

. N. Venkatram, R. Sathyavathi and D. N. Rao, “Size dependent multiphoton absorption and refraction of CdSe nanoparticles,” Opt. Express 15, 12258–12263 (2007).
[CrossRef] [PubMed]

Voisin, C.

. N. D. Fatti, C. Voisin, F. Chevy, F, Vallée, and C, Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles.,” J. Chem. Phys. 110, 11484–11487 (1999).
[CrossRef]

Wang, K.

Wang, Q. Q.

. Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16, 2405–2408 (2006).
[CrossRef]

Webb, W. W.

. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Watersoluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Wei, J.

. M. S. Neo, N. Venkatram, G. S. Li,W. S. Chin, and J. Wei, “Size-Dependent Optical Nonlinearities and Scattering Properties of PbS Nanoparticles,” J. Phys. Chem. C 113, 19055-19060 (2009).
[CrossRef]

Wei, T. H.

. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E.W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Williams, R. M.

. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Watersoluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Wise, F. W.

. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Watersoluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Woodruff, M.

Xu, Q. H.

. Y. H. Lee, Y. L. Yan, L. Polavarapu, and Q. H. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95, 203105–203105-3 (2009).
[PubMed]

Yan, Y. L.

. Y. H. Lee, Y. L. Yan, L. Polavarapu, and Q. H. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95, 203105–203105-3 (2009).
[PubMed]

Yang, G.

Yang, Q. G.

Yoon, S. H.

. H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M . Kim, “3rd order nonlinear optical properties of Au : SiO2 nanocomposite films with varying Au particle size,” Phys. Stat. Sol. A-Appl. Mat. Scie. 203, 1211-1216 (2006).
[CrossRef]

Yun, W. S.

Zhang, H. Z.

Zhao, X. J.

. Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16, 2405–2408 (2006).
[CrossRef]

Zimmermann, J.

Zipfel, W. R.

. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Watersoluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Adv. Funct. Mater.

. Q. Q. Wang, J. B. Han, H. M. Gong, D. J. Chen, X. J. Zhao, J. Y. Feng, and J. J. Ren, “Linear and nonlinear optical properties of Ag nanowire polarizing glass,” Adv. Funct. Mater. 16, 2405–2408 (2006).
[CrossRef]

Appl. Phys. Lett.

. N. Kamaraju, S. Kumar, B. Karthikeyan, A. Moravsky, R. O. Loutfy, and A. K. Sood, “Ultrafast electron dynamics and cubic optical nonlinearity of freestanding thin film of double walled carbon nanotubes,” Appl. Phys. Lett. 93, 091903–091903-3 (2008).
[CrossRef]

. N. Kamaraju, S. Kumar, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, and A. K. Sood, “Double walled carbon nanotubes as ultrafast optical switches,” Appl. Phys. Lett. 95, 081106–081106-3 (2009).
[CrossRef]

. Y. H. Lee, Y. L. Yan, L. Polavarapu, and Q. H. Xu, “Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements,” Appl. Phys. Lett. 95, 203105–203105-3 (2009).
[PubMed]

. L. A. Gómez, F. E. P.  dos Santos, A. S. L. Gomes, C. B. de Araújo, L. R. P. Kassab, and W. G. Hora, “Nearinfrared third-order nonlinearity of PbO-GeO2 films containing Cu and Cu2O nanoparticles,” Appl. Phys. Lett. 92, 141916–141916-3 (2009).

IEEE J. Quantum Electron.

. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E.W. Van Stryland, “Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Appl. Phys.

. L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys. 103, 033105–033015-7 (2008).
[CrossRef]

J. Chem. Phys.

. N. D. Fatti, C. Voisin, F. Chevy, F, Vallée, and C, Flytzanis, “Coherent acoustic mode oscillation and damping in silver nanoparticles.,” J. Chem. Phys. 110, 11484–11487 (1999).
[CrossRef]

J. Phys. Chem. B

. W. Y. Huang, W. Qian, and M. A. El-Sayed “The Optically Detected Coherent Lattice Oscillations in Silver and Gold Monolayer Periodic Nanoprism Arrays: The Effect of Interparicle coupling,” J. Phys. Chem. B 109, 18881–18888 (2005).
[CrossRef]

J. Phys. Chem. C

. M. S. Neo, N. Venkatram, G. S. Li,W. S. Chin, and J. Wei, “Size-Dependent Optical Nonlinearities and Scattering Properties of PbS Nanoparticles,” J. Phys. Chem. C 113, 19055-19060 (2009).
[CrossRef]

J. Vac. Sci. Technol. A

. J. C. Hulteen, R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553–1558 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Science

. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Watersoluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003).
[CrossRef] [PubMed]

Other

. H. S. Jun, K. S. Lee, S. H. Yoon, T. S. Lee, I. H. Kim, J. H. Jeong, B. Cheong, D. S. Kim, K. M. Cho, and W. M . Kim, “3rd order nonlinear optical properties of Au : SiO2 nanocomposite films with varying Au particle size,” Phys. Stat. Sol. A-Appl. Mat. Scie. 203, 1211-1216 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

show SEM images of triangluar nanoparticles arrays of four sizes of (a) 37 nm, (b) 70 nm, (c) 140 nm and (d) 190 nm.

Fig. 2.
Fig. 2.

Absorption spectra of Au PPAs with SPR peak at 552 nm, 566 nm, 580 nm and 606 nm. As the sizes increase, the SPR peaks shift to the longer wavelength.

Fig. 3.
Fig. 3.

The OA Z-scan results of 4 samples at exciting intensities at the focal point I0= 55 GW/cm2. The solid lines show the theoretical best fit.

Fig. 4.
Fig. 4.

The CA Z-scan results of 4 samples at exciting intensities at the focal point of I0=55 GW/cm2. The solid lines show the theoretical best fit.

Fig. 5.
Fig. 5.

(a) and (b) Nonlinear absorption coefficient and refraction index at the same intensity of I0= 55 GW/cm2 as a function of particle sizes. (c) and (d) show the values of FOMs as a function of particle sizes.

Tables (1)

Tables Icon

Table 1. Dependence of α0, β, n2, T and W for Au PPAs with different sizes in the intensity of 55 GW/cm2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

dI dz = [ α 0 ( 1 + I I s ) + β I ] I ,

Metrics