Abstract

One dimensional nanobeam photonic crystal cavities are fabricated in an Er-doped amorphous silicon nitride layer. Photoluminescence from the cavities around 1.54 µm is studied at cryogenic and room temperatures at different optical pump powers. The resonators demonstrate Purcell enhanced absorption and emission rates, also confirmed by time resolved measurements. Resonances exhibit linewidth narrowing with pump power, signifying absorption bleaching and the onset of stimulated emission in the material at both 5.5 K and room temperature. We estimate from the cavity linewidths that Er has been pumped to transparency at the cavity resonance wavelength.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. . S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107-031107 (2009).
    [CrossRef]
  2. . R. Li, S. Yerci, and L. Dal Negro, “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95, 041111 (2009).
    [CrossRef]
  3. . J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93, 151116 (2008).
    [CrossRef]
  4. . E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  5. . M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučkovič, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
    [CrossRef]
  6. . Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vučkovič, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18, 2601-2612 (2010).
    [CrossRef] [PubMed]
  7. . C. F. Wang, R. Hanson, D. D. Awschalom, and E. L. Hu, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
    [CrossRef]
  8. . C. Kreuzer, J. Riedrich-M¨oller, E. Neu, and C. Becher, “Design of Photonic Crystal Microcavities in Diamond Films,” Opt. Express 16, 1632-1644 (2008).
    [CrossRef] [PubMed]
  9. . M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550-555 (2009).
    [CrossRef] [PubMed]
  10. . M. W. McCutcheon and M. Lončar, “Design of an ultrahigh Quality factor silicon nitride photonic crystal nanocavity for coupling to diamond nanocrystals,” Opt. Express 16, 19136-19145 (2008).
    [CrossRef]
  11. . Y. Gong and J. Vučkovič, “Photonic Crystal Cavities in Silicon Dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
    [CrossRef]
  12. . M. Makarova, J. Vučkovič, H. Sanda, and Y. Nishi, “Silicon based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
    [CrossRef]
  13. . M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” IEEE J. Sel. Top. Quantum. Electron. 16, 132-140 (2010).
    [CrossRef]
  14. . H. Altug and J. Vučkovič, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
    [CrossRef]
  15. . D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovič, “Controlling Cavity Reflectivity With a Single Quantum Dot,” Nature 450, 857-861 (2007).
    [CrossRef] [PubMed]
  16. . E. Desurvire, Erbium-doped fiber amplifiers: principles and applications, pp. 230-298. JohnWiley & Sons: New York, 1994.
  17. . R. H. Hadfield, M. J. Stevens, S. G. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express 13, 10846-10853 (2005).
    [CrossRef] [PubMed]
  18. . A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778-3784 (1991).
    [CrossRef]
  19. . T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, “Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration,” Phys Rev. B 73, 075101 (2006).
    [CrossRef]
  20. . H. J. Kimble, “Structure and dynamics in cavity quantum electrodynamics,” in Cavity Quantum Electrodynamics, edited by P. Berman, pp. 203-267, Academic Press, 1994.
  21. . R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett. 94, 123101 (2009).
    [CrossRef]
  22. . Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997).
    [CrossRef]
  23. . H.-S. Han, S.-Y. Seo, J. H. Shin, and N. Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720-3722 (2002).
    [CrossRef]

2010 (3)

. Y. Gong and J. Vučkovič, “Photonic Crystal Cavities in Silicon Dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[CrossRef]

. M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” IEEE J. Sel. Top. Quantum. Electron. 16, 132-140 (2010).
[CrossRef]

. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vučkovič, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18, 2601-2612 (2010).
[CrossRef] [PubMed]

2009 (4)

. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550-555 (2009).
[CrossRef] [PubMed]

. R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett. 94, 123101 (2009).
[CrossRef]

. S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107-031107 (2009).
[CrossRef]

. R. Li, S. Yerci, and L. Dal Negro, “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95, 041111 (2009).
[CrossRef]

2008 (4)

. J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93, 151116 (2008).
[CrossRef]

. M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučkovič, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

. C. Kreuzer, J. Riedrich-M¨oller, E. Neu, and C. Becher, “Design of Photonic Crystal Microcavities in Diamond Films,” Opt. Express 16, 1632-1644 (2008).
[CrossRef] [PubMed]

. M. W. McCutcheon and M. Lončar, “Design of an ultrahigh Quality factor silicon nitride photonic crystal nanocavity for coupling to diamond nanocrystals,” Opt. Express 16, 19136-19145 (2008).
[CrossRef]

2007 (2)

. C. F. Wang, R. Hanson, D. D. Awschalom, and E. L. Hu, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[CrossRef]

. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovič, “Controlling Cavity Reflectivity With a Single Quantum Dot,” Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

2006 (2)

. T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, “Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration,” Phys Rev. B 73, 075101 (2006).
[CrossRef]

. M. Makarova, J. Vučkovič, H. Sanda, and Y. Nishi, “Silicon based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

2005 (2)

. H. Altug and J. Vučkovič, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

. R. H. Hadfield, M. J. Stevens, S. G. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express 13, 10846-10853 (2005).
[CrossRef] [PubMed]

2002 (1)

. H.-S. Han, S.-Y. Seo, J. H. Shin, and N. Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720-3722 (2002).
[CrossRef]

1997 (1)

. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

1991 (1)

. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778-3784 (1991).
[CrossRef]

1946 (1)

. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Altug, H.

. H. Altug and J. Vučkovič, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

Awschalom, D. D.

. C. F. Wang, R. Hanson, D. D. Awschalom, and E. L. Hu, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[CrossRef]

Baek, B.

Basu, S. N.

. S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107-031107 (2009).
[CrossRef]

. J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93, 151116 (2008).
[CrossRef]

Becher, C.

Beveratos, A.

. R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett. 94, 123101 (2009).
[CrossRef]

Böttger, T.

. T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, “Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration,” Phys Rev. B 73, 075101 (2006).
[CrossRef]

Braive, R.

. R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett. 94, 123101 (2009).
[CrossRef]

Camacho, R.

. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550-555 (2009).
[CrossRef] [PubMed]

Chan, J.

. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550-555 (2009).
[CrossRef] [PubMed]

Cheng, S-L.

. M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” IEEE J. Sel. Top. Quantum. Electron. 16, 132-140 (2010).
[CrossRef]

Cone, R. L.

. T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, “Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration,” Phys Rev. B 73, 075101 (2006).
[CrossRef]

Dal Negro, L.

. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vučkovič, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18, 2601-2612 (2010).
[CrossRef] [PubMed]

. M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” IEEE J. Sel. Top. Quantum. Electron. 16, 132-140 (2010).
[CrossRef]

. S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107-031107 (2009).
[CrossRef]

. R. Li, S. Yerci, and L. Dal Negro, “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95, 041111 (2009).
[CrossRef]

. J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93, 151116 (2008).
[CrossRef]

. M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučkovič, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

de Waal, H.

. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

Dorenbos, S. N.

Eaglesham, D. J.

. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778-3784 (1991).
[CrossRef]

Eichenfield, M.

. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550-555 (2009).
[CrossRef] [PubMed]

Englund, D.

. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovič, “Controlling Cavity Reflectivity With a Single Quantum Dot,” Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Faber, A. J.

. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

Faraon, A.

. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovič, “Controlling Cavity Reflectivity With a Single Quantum Dot,” Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Fushman, I.

. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovič, “Controlling Cavity Reflectivity With a Single Quantum Dot,” Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Gong, Y.

. Y. Gong and J. Vučkovič, “Photonic Crystal Cavities in Silicon Dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[CrossRef]

. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vučkovič, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18, 2601-2612 (2010).
[CrossRef] [PubMed]

. M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” IEEE J. Sel. Top. Quantum. Electron. 16, 132-140 (2010).
[CrossRef]

Gruber, S. G.

Hadfield, R. H.

Han, H.-S.

. H.-S. Han, S.-Y. Seo, J. H. Shin, and N. Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720-3722 (2002).
[CrossRef]

Hanson, R.

. C. F. Wang, R. Hanson, D. D. Awschalom, and E. L. Hu, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[CrossRef]

Hostein, R.

. R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett. 94, 123101 (2009).
[CrossRef]

Hu, E. L.

. C. F. Wang, R. Hanson, D. D. Awschalom, and E. L. Hu, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[CrossRef]

Jacobson, D. C.

. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778-3784 (1991).
[CrossRef]

Kik, P. G.

. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

Kistler, R. C.

. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778-3784 (1991).
[CrossRef]

Kreuzer, C.

Kucheyev, S. O.

. S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107-031107 (2009).
[CrossRef]

Larqué, M.

. R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett. 94, 123101 (2009).
[CrossRef]

Le Gratiet, L.

. R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett. 94, 123101 (2009).
[CrossRef]

Lee, K.-H.

. R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett. 94, 123101 (2009).
[CrossRef]

Li, R.

. M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” IEEE J. Sel. Top. Quantum. Electron. 16, 132-140 (2010).
[CrossRef]

. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vučkovič, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18, 2601-2612 (2010).
[CrossRef] [PubMed]

. S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107-031107 (2009).
[CrossRef]

. R. Li, S. Yerci, and L. Dal Negro, “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95, 041111 (2009).
[CrossRef]

. J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93, 151116 (2008).
[CrossRef]

. M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučkovič, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

Loncar, M.

Makarova, M.

. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vučkovič, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18, 2601-2612 (2010).
[CrossRef] [PubMed]

. M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” IEEE J. Sel. Top. Quantum. Electron. 16, 132-140 (2010).
[CrossRef]

. M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučkovič, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

. M. Makarova, J. Vučkovič, H. Sanda, and Y. Nishi, “Silicon based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

McCutcheon, M. W.

Miller, A. J.

Mirin, R. P.

Nam, S. W.

Neu, E.

Nishi, Y.

. M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” IEEE J. Sel. Top. Quantum. Electron. 16, 132-140 (2010).
[CrossRef]

. M. Makarova, J. Vučkovič, H. Sanda, and Y. Nishi, “Silicon based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

Painter, O.

. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550-555 (2009).
[CrossRef] [PubMed]

Park, N.

. H.-S. Han, S.-Y. Seo, J. H. Shin, and N. Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720-3722 (2002).
[CrossRef]

Petroff, P.

. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovič, “Controlling Cavity Reflectivity With a Single Quantum Dot,” Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Poate, J. M.

. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778-3784 (1991).
[CrossRef]

Polman, A.

. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778-3784 (1991).
[CrossRef]

Purcell, E. M.

. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Riedrich-M¨oller, J.

Robert-Philip, I.

. R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett. 94, 123101 (2009).
[CrossRef]

Sagnes, I.

. R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett. 94, 123101 (2009).
[CrossRef]

Sanda, H.

. M. Makarova, J. Vučkovič, H. Sanda, and Y. Nishi, “Silicon based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

Schwall, R. E.

Seo, S.-Y.

. H.-S. Han, S.-Y. Seo, J. H. Shin, and N. Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720-3722 (2002).
[CrossRef]

Shin, J. H.

. H.-S. Han, S.-Y. Seo, J. H. Shin, and N. Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720-3722 (2002).
[CrossRef]

Sih, V.

. M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučkovič, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

Stevens, M. J.

Stoltz, N.

. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovič, “Controlling Cavity Reflectivity With a Single Quantum Dot,” Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Sun, Y.

. T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, “Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration,” Phys Rev. B 73, 075101 (2006).
[CrossRef]

Talneau, A.

. R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett. 94, 123101 (2009).
[CrossRef]

Thiel, C. W.

. T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, “Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration,” Phys Rev. B 73, 075101 (2006).
[CrossRef]

Vahala, K. J.

. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550-555 (2009).
[CrossRef] [PubMed]

van Buuren, T.

. S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107-031107 (2009).
[CrossRef]

Vuckovic, J.

. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vučkovič, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18, 2601-2612 (2010).
[CrossRef] [PubMed]

. M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” IEEE J. Sel. Top. Quantum. Electron. 16, 132-140 (2010).
[CrossRef]

. Y. Gong and J. Vučkovič, “Photonic Crystal Cavities in Silicon Dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[CrossRef]

. M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučkovič, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovič, “Controlling Cavity Reflectivity With a Single Quantum Dot,” Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

. M. Makarova, J. Vučkovič, H. Sanda, and Y. Nishi, “Silicon based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

. H. Altug and J. Vučkovič, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

Wang, C. F.

. C. F. Wang, R. Hanson, D. D. Awschalom, and E. L. Hu, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[CrossRef]

Warga, J.

. M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučkovič, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

. J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93, 151116 (2008).
[CrossRef]

Yan, Y. C.

. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

Yerci, S.

. M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” IEEE J. Sel. Top. Quantum. Electron. 16, 132-140 (2010).
[CrossRef]

. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vučkovič, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18, 2601-2612 (2010).
[CrossRef] [PubMed]

. S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107-031107 (2009).
[CrossRef]

. R. Li, S. Yerci, and L. Dal Negro, “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95, 041111 (2009).
[CrossRef]

Zwiller, V.

Appl. Phys. Lett. (11)

. S. Yerci, R. Li, S. O. Kucheyev, T. van Buuren, S. N. Basu, and L. Dal Negro, “Energy transfer and 1.54 μm emission in amorphous silicon nitride films,” Appl. Phys. Lett. 95, 031107-031107 (2009).
[CrossRef]

. R. Li, S. Yerci, and L. Dal Negro, “Temperature dependence of the energy transfer from amorphous silicon nitride to Er ions,” Appl. Phys. Lett. 95, 041111 (2009).
[CrossRef]

. J. Warga, R. Li, S. N. Basu, and L. Dal Negro, “Electroluminescence from silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93, 151116 (2008).
[CrossRef]

. M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vučkovič, “Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals,” Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

. C. F. Wang, R. Hanson, D. D. Awschalom, and E. L. Hu, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007).
[CrossRef]

. Y. Gong and J. Vučkovič, “Photonic Crystal Cavities in Silicon Dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[CrossRef]

. M. Makarova, J. Vučkovič, H. Sanda, and Y. Nishi, “Silicon based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

. H. Altug and J. Vučkovič, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

. R. Hostein, R. Braive, M. Larqué, K.-H. Lee, A. Talneau, L. Le Gratiet, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C band,” Appl. Phys. Lett. 94, 123101 (2009).
[CrossRef]

. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922-2924 (1997).
[CrossRef]

. H.-S. Han, S.-Y. Seo, J. H. Shin, and N. Park, “Coefficient determination related to optical gain in erbium-doped silicon-rich silicon oxide waveguide amplifier,” Appl. Phys. Lett. 81, 3720-3722 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron. (1)

. M. Makarova, Y. Gong, S-L. Cheng, Y. Nishi, S. Yerci, R. Li, L. Dal Negro, and J. Vučković. “Photonic Crystal and Plasmonic Silicon Based Light Sources,” IEEE J. Sel. Top. Quantum. Electron. 16, 132-140 (2010).
[CrossRef]

J. Appl. Phys. (1)

. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70, 3778-3784 (1991).
[CrossRef]

Nature (2)

. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučkovič, “Controlling Cavity Reflectivity With a Single Quantum Dot,” Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photoniccrystal optomechanical cavity,” Nature 459, 550-555 (2009).
[CrossRef] [PubMed]

Opt. Express (4)

Phys Rev. B (1)

. T. Böttger, C. W. Thiel, Y. Sun, and R. L. Cone, “Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration,” Phys Rev. B 73, 075101 (2006).
[CrossRef]

Phys. Rev. (1)

. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Other (2)

. H. J. Kimble, “Structure and dynamics in cavity quantum electrodynamics,” in Cavity Quantum Electrodynamics, edited by P. Berman, pp. 203-267, Academic Press, 1994.

. E. Desurvire, Erbium-doped fiber amplifiers: principles and applications, pp. 230-298. JohnWiley & Sons: New York, 1994.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Scanning electron micrograph (SEM) of the fabricated Er:SiNx nanobeam cavity. (b) The |E|2 profile of the fundamental cavity mode from FDTD simulations. The area of each marker illustrates the (c) Q and (d) Vmode of the cavity as the width and height of the beam is changed, while hx = 0.5a, hy = 0.7w, and the design of the holes are fixed.

Fig. 2.
Fig. 2.

(a) Photoluminescence from the cavity at room temperature and the unpatterned film at room temperature and 5.5 K. The whole membrane is composed of Er:SiNx in this case (type I, shown in inset). (b) Spectrum of a cavity fabricated in SiNx with only the middle third doped with Er (type II, shown in inset). Dots correspond to the spectrum obtained by a laser scan in cross-polarization reflectivity, and circles to PL measured by the spectrometer. Fits to a Lorentzian lineshape gives a Q = 52,000 from the reflectivity scan and a spectrometer resolution limited Q = 25, 000.

Fig. 3.
Fig. 3.

The pump power dependence of the (a) integrated PC cavity intensity and PL spectrally decoupled from the cavity, (b) the cavity resonance wavelength, and (c) the cavity Q, all at 5.5K and 290K. The shift in wavelength between the two temperatures is most likely due to a shift of the sample position in the cryostat as temperature is varied. The pump power is measured in front of the objective lens.

Fig. 4.
Fig. 4.

(a) The Qs of the cavities at 5.5K and 290K, both with low pump power (less than 10 µW). The dashed lines connect the data for the same cavity at the two different temperatures. The shift in wavelength between the two temperatures is most likely due to a shift of the sample position in the cryostat as temperature is varied. (b) The change in the linewidth (full-width at half-max, FWHM) for individual cavities as pump power is switched from less than 10 µW to 40 mW, at 5.5 K and room temperature. The scaled and shifted Er spectrum is shown in gray as a reference.

Fig. 5.
Fig. 5.

(a) Time-resolved PL measurements of the cavity resonance for various pump powers at ~3 K, as well as unpatterned film (integrated for all wavelengths). Solid lines for the cavity time traces are fits to a bi-exponential model for the cavity emission, and a single exponential model for the bulk emission. (b) The fast and slow components from the fits in part (a), as well as for an unpatterned film lifetimes for various pump powers.

Fig. 6.
Fig. 6.

(a) The difference in between the cavity linewidth at 5.5 K and 290 K, under high pump power (greater than 40 mW). The scaled and shifted Er spectrum is shown as a reference. (b) The absorption rate achieved at room temperature using high pump power (circles) and low pump power (squares) calculated using the cavity Qs measured in experiment, with error bounds assuming that the Er homogeneous linewidth is between η = 4 and η = 8 times narrower at 5.5K than at room temperature. (c) The absorption rate achieved at 5.5 K at high pump power (circles) and low pump power (squares), with the same error bounds as part (b). Regions with positive γa correspond to gain achieved with the system.

Fig. 7.
Fig. 7.

(a) The change in linewidth between 5.5 K and room temperature, both measured at low pump powers (below 10 µW). The size of the points represents the intrinsic cavity Q-factor (Qcav). The scaled and shifted Er spectrum is shown as a reference.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 τ cav = F p τ r + 1 τ nr .
ω 0 Q obs = ω 0 Q cav γ ( P , T ) ,

Metrics