Abstract

In this work we report the study of energy transfer between Nd3+ and Yb3+ ions in glasses with the 0.8CaSiO3-0.2Ca3(PO4)2 eutectic composition at room temperature by using steady-state and time-resolved laser spectroscopy. The Nd3+→Yb3+ transfer efficiency obtained from the Nd3+ lifetimes in the single doped and codoped samples reaches 73% for the highest Nd3+ concentration. The donor decay curves obtained under pulsed excitation have been used to establish the multipolar nature of the Nd3+→ Yb3+ transfer process and the energy transfer microparameter. The nonradiative energy transfer is consistent with an electric dipole-dipole interaction mechanism assisted by energy migration among donors. Back transfer from Yb3+ to Nd3+ is also observed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
    [CrossRef]
  2. J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
    [CrossRef]
  3. R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
    [CrossRef] [PubMed]
  4. M. J. Weber, “Optical properties of Yb3+ and Nd3+ -Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4(9), 3153–3159 (1971).
    [CrossRef]
  5. C. Lurin, C. Parent, G. Le Flem, and P. Hagenmuller, “Energy transfer in a Nd3+-Yb3+ borate glass,” J. Phys. Chem. Solids 46(9), 1083–1092 (1985).
    [CrossRef]
  6. C. Parent, C. Lurin, G. Le Flem, and P. Hagenmuller, “Nd3+→Yb3+ energy transfer in glasses with composition close to LiLnP14O12 metaphosphate (Ln=La, nd, Yb),” J. Lumin. 36(1), 49–55 (1986).
    [CrossRef]
  7. W. Ryba-Romanowski, S. Golab, L. Cichosz, and B. Jezowska-Trzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd3+ toYb3+ and from Yb3+ to Er3+ in tellurite glass,” J. Non-Cryst. Solids 105(3), 295–302 (1988).
    [CrossRef]
  8. F. Batalioto, D. F. Sousa, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Optical measurements of Nd3+/Yb3+ codoped fluorindogallate glasses,” J. Non-Cryst. Solids 273(1-3), 233–238 (2000).
    [CrossRef]
  9. D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001).
    [CrossRef]
  10. D. Jaque, M. O. Ramirez, L. E. Bausá, J. García-Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68(3), 035118 (2003).
    [CrossRef]
  11. F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B 80(8), 985–991 (2005).
    [CrossRef]
  12. R. Balda, J. Fernández, I. Iparraguirre, and M. Al-Saleh, “Spectroscopic study of Nd3+/Yb3+ in disordered potassium bismuth molybdate laser crystals,” Opt. Mater. 28(11), 1247–1252 (2006).
    [CrossRef]
  13. U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+/Yb3+ resonant energy transfer in the ferroelectric Sr0.6 Ba0.4 Nb2O6 laser crystal,” Phys. Rev. B 77(7), 075121 (2008).
    [CrossRef]
  14. Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
    [CrossRef]
  15. A. Lupei, V. Lupei, A. Ikesue, and C. Gheorghe, “Spectroscopic and energy transfer investigation of Nd/Yb in Y2O3 transparent ceramics,” J. Opt. Soc. Am. B 27(5), 1002–1010 (2010).
    [CrossRef]
  16. M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
    [CrossRef]
  17. A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).

2010 (1)

2009 (2)

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

2008 (1)

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+/Yb3+ resonant energy transfer in the ferroelectric Sr0.6 Ba0.4 Nb2O6 laser crystal,” Phys. Rev. B 77(7), 075121 (2008).
[CrossRef]

2006 (2)

R. Balda, J. Fernández, I. Iparraguirre, and M. Al-Saleh, “Spectroscopic study of Nd3+/Yb3+ in disordered potassium bismuth molybdate laser crystals,” Opt. Mater. 28(11), 1247–1252 (2006).
[CrossRef]

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
[CrossRef]

2005 (1)

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B 80(8), 985–991 (2005).
[CrossRef]

2003 (1)

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García-Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68(3), 035118 (2003).
[CrossRef]

2002 (1)

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[CrossRef]

2001 (1)

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001).
[CrossRef]

2000 (1)

F. Batalioto, D. F. Sousa, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Optical measurements of Nd3+/Yb3+ codoped fluorindogallate glasses,” J. Non-Cryst. Solids 273(1-3), 233–238 (2000).
[CrossRef]

1988 (1)

W. Ryba-Romanowski, S. Golab, L. Cichosz, and B. Jezowska-Trzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd3+ toYb3+ and from Yb3+ to Er3+ in tellurite glass,” J. Non-Cryst. Solids 105(3), 295–302 (1988).
[CrossRef]

1986 (1)

C. Parent, C. Lurin, G. Le Flem, and P. Hagenmuller, “Nd3+→Yb3+ energy transfer in glasses with composition close to LiLnP14O12 metaphosphate (Ln=La, nd, Yb),” J. Lumin. 36(1), 49–55 (1986).
[CrossRef]

1985 (1)

C. Lurin, C. Parent, G. Le Flem, and P. Hagenmuller, “Energy transfer in a Nd3+-Yb3+ borate glass,” J. Phys. Chem. Solids 46(9), 1083–1092 (1985).
[CrossRef]

1982 (1)

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
[CrossRef]

1972 (1)

A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).

1971 (1)

M. J. Weber, “Optical properties of Yb3+ and Nd3+ -Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4(9), 3153–3159 (1971).
[CrossRef]

Al-Saleh, M.

R. Balda, J. Fernández, I. Iparraguirre, and M. Al-Saleh, “Spectroscopic study of Nd3+/Yb3+ in disordered potassium bismuth molybdate laser crystals,” Opt. Mater. 28(11), 1247–1252 (2006).
[CrossRef]

Angell, C. A.

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
[CrossRef]

Arcangeli, A.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Azkargorta, J.

Balda, R.

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

R. Balda, J. Fernández, I. Iparraguirre, and M. Al-Saleh, “Spectroscopic study of Nd3+/Yb3+ in disordered potassium bismuth molybdate laser crystals,” Opt. Mater. 28(11), 1247–1252 (2006).
[CrossRef]

Batalioto, F.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001).
[CrossRef]

F. Batalioto, D. F. Sousa, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Optical measurements of Nd3+/Yb3+ codoped fluorindogallate glasses,” J. Non-Cryst. Solids 273(1-3), 233–238 (2000).
[CrossRef]

Bausá, L. E.

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García-Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68(3), 035118 (2003).
[CrossRef]

Bell, M. J. V.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001).
[CrossRef]

F. Batalioto, D. F. Sousa, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Optical measurements of Nd3+/Yb3+ codoped fluorindogallate glasses,” J. Non-Cryst. Solids 273(1-3), 233–238 (2000).
[CrossRef]

Bettinelli, M.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+/Yb3+ resonant energy transfer in the ferroelectric Sr0.6 Ba0.4 Nb2O6 laser crystal,” Phys. Rev. B 77(7), 075121 (2008).
[CrossRef]

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B 80(8), 985–991 (2005).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García-Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68(3), 035118 (2003).
[CrossRef]

Bonelli, L.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Burshtein, A. I.

A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).

Caldiño, U.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+/Yb3+ resonant energy transfer in the ferroelectric Sr0.6 Ba0.4 Nb2O6 laser crystal,” Phys. Rev. B 77(7), 075121 (2008).
[CrossRef]

Cases, R.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[CrossRef]

Cavalli, E.

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García-Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68(3), 035118 (2003).
[CrossRef]

Cichosz, L.

W. Ryba-Romanowski, S. Golab, L. Cichosz, and B. Jezowska-Trzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd3+ toYb3+ and from Yb3+ to Er3+ in tellurite glass,” J. Non-Cryst. Solids 105(3), 295–302 (1988).
[CrossRef]

de Sousa, D. F.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001).
[CrossRef]

Dong, C.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Doualan, J. L.

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B 80(8), 985–991 (2005).
[CrossRef]

Fernández, J.

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

R. Balda, J. Fernández, I. Iparraguirre, and M. Al-Saleh, “Spectroscopic study of Nd3+/Yb3+ in disordered potassium bismuth molybdate laser crystals,” Opt. Mater. 28(11), 1247–1252 (2006).
[CrossRef]

García Solé, J.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+/Yb3+ resonant energy transfer in the ferroelectric Sr0.6 Ba0.4 Nb2O6 laser crystal,” Phys. Rev. B 77(7), 075121 (2008).
[CrossRef]

García-Revilla, S.

García-Solé, J.

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García-Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68(3), 035118 (2003).
[CrossRef]

Gheorghe, C.

Golab, S.

W. Ryba-Romanowski, S. Golab, L. Cichosz, and B. Jezowska-Trzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd3+ toYb3+ and from Yb3+ to Er3+ in tellurite glass,” J. Non-Cryst. Solids 105(3), 295–302 (1988).
[CrossRef]

Hagenmuller, P.

C. Parent, C. Lurin, G. Le Flem, and P. Hagenmuller, “Nd3+→Yb3+ energy transfer in glasses with composition close to LiLnP14O12 metaphosphate (Ln=La, nd, Yb),” J. Lumin. 36(1), 49–55 (1986).
[CrossRef]

C. Lurin, C. Parent, G. Le Flem, and P. Hagenmuller, “Energy transfer in a Nd3+-Yb3+ borate glass,” J. Phys. Chem. Solids 46(9), 1083–1092 (1985).
[CrossRef]

Hernandes, A. C.

F. Batalioto, D. F. Sousa, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Optical measurements of Nd3+/Yb3+ codoped fluorindogallate glasses,” J. Non-Cryst. Solids 273(1-3), 233–238 (2000).
[CrossRef]

Ikesue, A.

Iparraguirre, I.

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

R. Balda, J. Fernández, I. Iparraguirre, and M. Al-Saleh, “Spectroscopic study of Nd3+/Yb3+ in disordered potassium bismuth molybdate laser crystals,” Opt. Mater. 28(11), 1247–1252 (2006).
[CrossRef]

Jaque, D.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+/Yb3+ resonant energy transfer in the ferroelectric Sr0.6 Ba0.4 Nb2O6 laser crystal,” Phys. Rev. B 77(7), 075121 (2008).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García-Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68(3), 035118 (2003).
[CrossRef]

Jezowska-Trzebiatowska, B.

W. Ryba-Romanowski, S. Golab, L. Cichosz, and B. Jezowska-Trzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd3+ toYb3+ and from Yb3+ to Er3+ in tellurite glass,” J. Non-Cryst. Solids 105(3), 295–302 (1988).
[CrossRef]

Jia, Z.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Jiang, M.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Larrea, A.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[CrossRef]

Le Flem, G.

C. Parent, C. Lurin, G. Le Flem, and P. Hagenmuller, “Nd3+→Yb3+ energy transfer in glasses with composition close to LiLnP14O12 metaphosphate (Ln=La, nd, Yb),” J. Lumin. 36(1), 49–55 (1986).
[CrossRef]

C. Lurin, C. Parent, G. Le Flem, and P. Hagenmuller, “Energy transfer in a Nd3+-Yb3+ borate glass,” J. Phys. Chem. Solids 46(9), 1083–1092 (1985).
[CrossRef]

Lebullenger, R.

F. Batalioto, D. F. Sousa, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Optical measurements of Nd3+/Yb3+ codoped fluorindogallate glasses,” J. Non-Cryst. Solids 273(1-3), 233–238 (2000).
[CrossRef]

Liégard, F.

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B 80(8), 985–991 (2005).
[CrossRef]

Llorca, J.

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
[CrossRef]

Lupei, A.

Lupei, V.

Lurin, C.

C. Parent, C. Lurin, G. Le Flem, and P. Hagenmuller, “Nd3+→Yb3+ energy transfer in glasses with composition close to LiLnP14O12 metaphosphate (Ln=La, nd, Yb),” J. Lumin. 36(1), 49–55 (1986).
[CrossRef]

C. Lurin, C. Parent, G. Le Flem, and P. Hagenmuller, “Energy transfer in a Nd3+-Yb3+ borate glass,” J. Phys. Chem. Solids 46(9), 1083–1092 (1985).
[CrossRef]

Martín-Rodríguez, E.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+/Yb3+ resonant energy transfer in the ferroelectric Sr0.6 Ba0.4 Nb2O6 laser crystal,” Phys. Rev. B 77(7), 075121 (2008).
[CrossRef]

Merino, R. I.

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[CrossRef]

Moncorgé, R.

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B 80(8), 985–991 (2005).
[CrossRef]

Nunes, L. A. O.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001).
[CrossRef]

F. Batalioto, D. F. Sousa, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Optical measurements of Nd3+/Yb3+ codoped fluorindogallate glasses,” J. Non-Cryst. Solids 273(1-3), 233–238 (2000).
[CrossRef]

Oliveira, S. L.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001).
[CrossRef]

Orera, V. M.

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
[CrossRef]

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[CrossRef]

Pardo, J. A.

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[CrossRef]

Parent, C.

C. Parent, C. Lurin, G. Le Flem, and P. Hagenmuller, “Nd3+→Yb3+ energy transfer in glasses with composition close to LiLnP14O12 metaphosphate (Ln=La, nd, Yb),” J. Lumin. 36(1), 49–55 (1986).
[CrossRef]

C. Lurin, C. Parent, G. Le Flem, and P. Hagenmuller, “Energy transfer in a Nd3+-Yb3+ borate glass,” J. Phys. Chem. Solids 46(9), 1083–1092 (1985).
[CrossRef]

Peña, J. I.

R. Balda, J. Fernández, I. Iparraguirre, J. Azkargorta, S. García-Revilla, J. I. Peña, R. I. Merino, and V. M. Orera, “Broadband laser tunability of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 eutectic glass,” Opt. Express 17(6), 4382–4387 (2009).
[CrossRef] [PubMed]

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[CrossRef]

Ramirez, M. O.

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García-Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68(3), 035118 (2003).
[CrossRef]

Ramírez, M. O.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+/Yb3+ resonant energy transfer in the ferroelectric Sr0.6 Ba0.4 Nb2O6 laser crystal,” Phys. Rev. B 77(7), 075121 (2008).
[CrossRef]

Ryba-Romanowski, W.

W. Ryba-Romanowski, S. Golab, L. Cichosz, and B. Jezowska-Trzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd3+ toYb3+ and from Yb3+ to Er3+ in tellurite glass,” J. Non-Cryst. Solids 105(3), 295–302 (1988).
[CrossRef]

Sousa, D. F.

F. Batalioto, D. F. Sousa, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Optical measurements of Nd3+/Yb3+ codoped fluorindogallate glasses,” J. Non-Cryst. Solids 273(1-3), 233–238 (2000).
[CrossRef]

Speghini, A.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+/Yb3+ resonant energy transfer in the ferroelectric Sr0.6 Ba0.4 Nb2O6 laser crystal,” Phys. Rev. B 77(7), 075121 (2008).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García-Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68(3), 035118 (2003).
[CrossRef]

Tao, X.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Tonelli, M.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Weber, M. J.

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
[CrossRef]

M. J. Weber, “Optical properties of Yb3+ and Nd3+ -Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4(9), 3153–3159 (1971).
[CrossRef]

Zhang, J.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Ziegler, D. C.

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
[CrossRef]

Appl. Phys. B (1)

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B 80(8), 985–991 (2005).
[CrossRef]

J. Appl. Phys. (3)

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001).
[CrossRef]

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+,Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

M. J. Weber, D. C. Ziegler, and C. A. Angell, “Tailoring stimulated emission cross sections of Nd3+ laser glass: Observation of large cross sections for BiCl3 glasses,” J. Appl. Phys. 53(6), 4344–4350 (1982).
[CrossRef]

J. Lumin. (1)

C. Parent, C. Lurin, G. Le Flem, and P. Hagenmuller, “Nd3+→Yb3+ energy transfer in glasses with composition close to LiLnP14O12 metaphosphate (Ln=La, nd, Yb),” J. Lumin. 36(1), 49–55 (1986).
[CrossRef]

J. Non-Cryst. Solids (3)

W. Ryba-Romanowski, S. Golab, L. Cichosz, and B. Jezowska-Trzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd3+ toYb3+ and from Yb3+ to Er3+ in tellurite glass,” J. Non-Cryst. Solids 105(3), 295–302 (1988).
[CrossRef]

F. Batalioto, D. F. Sousa, M. J. V. Bell, R. Lebullenger, A. C. Hernandes, and L. A. O. Nunes, “Optical measurements of Nd3+/Yb3+ codoped fluorindogallate glasses,” J. Non-Cryst. Solids 273(1-3), 233–238 (2000).
[CrossRef]

J. A. Pardo, J. I. Peña, R. I. Merino, R. Cases, A. Larrea, and V. M. Orera, “Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8CaSiO3–0.2Ca3(PO4)2 eutectic composition,” J. Non-Cryst. Solids 298(1), 23–31 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

C. Lurin, C. Parent, G. Le Flem, and P. Hagenmuller, “Energy transfer in a Nd3+-Yb3+ borate glass,” J. Phys. Chem. Solids 46(9), 1083–1092 (1985).
[CrossRef]

Opt. Express (1)

Opt. Mater. (1)

R. Balda, J. Fernández, I. Iparraguirre, and M. Al-Saleh, “Spectroscopic study of Nd3+/Yb3+ in disordered potassium bismuth molybdate laser crystals,” Opt. Mater. 28(11), 1247–1252 (2006).
[CrossRef]

Phys. Rev. B (3)

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+/Yb3+ resonant energy transfer in the ferroelectric Sr0.6 Ba0.4 Nb2O6 laser crystal,” Phys. Rev. B 77(7), 075121 (2008).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausá, J. García-Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68(3), 035118 (2003).
[CrossRef]

M. J. Weber, “Optical properties of Yb3+ and Nd3+ -Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4(9), 3153–3159 (1971).
[CrossRef]

Prog. Mater. Sci. (1)

J. Llorca and V. M. Orera, “Directionally solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
[CrossRef]

Sov. Phys. JETP (1)

A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Room temperature absorption spectrum of a codoped sample with 3 wt% of Nd2O3 and 2 wt% of Yb2O3.

Fig. 2
Fig. 2

Room temperature emission spectra of Nd3+ and Yb3+ in the codoped samples together with the emission spectrum of Nd3+ ions in a single doped glass. The spectra are normalized to the 880 nm emission of Nd3+.

Fig. 3
Fig. 3

Absorption and emission cross section of Yb3+ in the single doped sample.

Fig. 4
Fig. 4

Spectral overlap between Nd3+ emission and Yb3+ absorption in the single doped samples.

Fig. 5
Fig. 5

Lifetimes of the 4F3/24I9/2 emission for the single doped samples (black) and codoped samples (pink) and Nd3+-Yb3+ energy transfer efficiency (blue) as a function of Nd3+ concentration.

Fig. 4
Fig. 4

Logarithmic plot of the fluorescence decays of the 4F3/24I9/2 emission as a function of Nd3+ concentration in (a) single doped and (b) codoped samples.

Fig. 6
Fig. 6

Experimental emission decay curve of level 4F3/2 for the codoped sample with 3 wt% of Nd2O3 and 2 wt% of Yb2O3 at room temperature and the calculated fit with Eq. (4) (solid line).

Fig. 7
Fig. 7

Room temperature emission spectra obtained for the codoped sample with 3 wt% of Nd2O3 and 2 wt% of Yb2O3 and the single doped glass with 2 wt% Yb2O3. The spectra are normalized to the Yb3+ emission.

Fig. 8
Fig. 8

Logarithmic plot of the fluorescence decays of the 2F5/22F7/2 emission of Yb3+ ions in the codoped samples for three different Nd3+ concentrations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ se = λ p 4 β n 2 c I ( λ ) τ R I ( λ ) d λ
1 τ R = g f g i 8 π cn 2 N λ 0 2 α ( λ ) λ 2 d λ
η t = 1 τ N d Y b τ N d
I ( t ) = I 0 exp ( t τ 0 γ t W t )

Metrics