Abstract

We demonstrate a dynamic optical channel leveler composed of a variable optical attenuator (VOA) integrated monolithically with a defect-mediated photodiode in a silicon photonic waveguide device. An external feedback loop mimics an analog circuit such that the photodiode directly controls the VOA to provide blind channel leveling within ±1 dB across a 7-10 dB dynamic range for wavelengths from 1530 nm to 1570 nm. The device consumes approximately 50 mW electrical power and occupies a 6 mm x 0.1 mm footprint per channel. Dynamic leveling is accomplished without tapping optical power from the output path to the photodiode and thus the loss penalty is minimized.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [CrossRef] [PubMed]
  2. I. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion-loss highly efficient high-speed electronic variable attenuators”, Proc. IEEE Opt. Fiber Commun. Conf. 1, Mar. 23–28, pp. 249–251 (2003).
  3. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  4. J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “‘Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
    [CrossRef]
  5. D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16(21), 16754–16765 (2008).
    [CrossRef] [PubMed]
  6. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  8. M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett. 18(23), 2442–2444 (2006).
    [CrossRef]
  9. H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express 15(10), 6044–6052 (2007).
    [CrossRef] [PubMed]
  10. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
    [CrossRef]
  11. S. M. Csutak, S. Dakshina-Murthy, and J. C. Campbell, “CMOS-Compatible Planar Silicon Waveguide-Grating-Coupler Photodetectors Fabricated on Silicon-on-Insulator (SOI) Substrates,” IEEE J. Quantum Electron. 38(5), 477–480 (2002).
    [CrossRef]
  12. J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” IET Electr. Lett. 46, 3 (2010).
  13. C. R. Giles and D. J. Giovanni, “Dynamic gain equalization in two-stage fiber amplifiers,” IEEE Photon. Technol. Lett. 2(12), 866–868 (1990).
    [CrossRef]
  14. K. Inoue, T. Kominato, and H. Toba, “Gain Equalization Using a Mach- Zehnder Optical Filter in Multistage Fiber Amplifiers,” IEEE Photon. Technol. Lett. 3(8), 718–720 (1991).
    [CrossRef]
  15. J. E. Ford and J. A. Walker, “Dynamic Spectral Power Equalization Using Micro-Opto-Mechanics,” IEEE Photon. Technol. Lett. 10(10), 1440–1442 (1998).
    [CrossRef]
  16. C. R. Doerr, R. Pafchek, and L. W. Stulz, “16-Band Integrated Dynamic Gain Equalization Filter With Less Than 2.8-dB Insertion Loss,” IEEE Photon. Technol. Lett. 14(3), 334–336 (2002).
    [CrossRef]
  17. Y. Liu, C. W. Chow, C. H. Kwok, H. K. Tsang, and C. Lin, “Dynamic-channel-equalizer using in-line channel power monitor and electronic variable optical attenuator,” Opt. Commun. 272(1), 87–91 (2007).
    [CrossRef]
  18. http://www.ni.com/labview/
  19. http://www.epixfab.eu/
  20. F. Van Laere, G. Roelkens, J. Schrauwen, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Compact Grating Couplers Between Optical Fibers and Silicon-on-Insulator Photonic Wire Waveguides with 69% Coupling Efficiency”, Optical Fiber Communication Conference (OFC), PDP15 (2006).
  21. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [CrossRef]
  22. A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
    [CrossRef]

2010

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” IET Electr. Lett. 46, 3 (2010).

2008

2007

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express 15(10), 6044–6052 (2007).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Y. Liu, C. W. Chow, C. H. Kwok, H. K. Tsang, and C. Lin, “Dynamic-channel-equalizer using in-line channel power monitor and electronic variable optical attenuator,” Opt. Commun. 272(1), 87–91 (2007).
[CrossRef]

2006

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett. 18(23), 2442–2444 (2006).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[CrossRef]

2005

J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “‘Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

2004

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

2002

S. M. Csutak, S. Dakshina-Murthy, and J. C. Campbell, “CMOS-Compatible Planar Silicon Waveguide-Grating-Coupler Photodetectors Fabricated on Silicon-on-Insulator (SOI) Substrates,” IEEE J. Quantum Electron. 38(5), 477–480 (2002).
[CrossRef]

C. R. Doerr, R. Pafchek, and L. W. Stulz, “16-Band Integrated Dynamic Gain Equalization Filter With Less Than 2.8-dB Insertion Loss,” IEEE Photon. Technol. Lett. 14(3), 334–336 (2002).
[CrossRef]

1998

J. E. Ford and J. A. Walker, “Dynamic Spectral Power Equalization Using Micro-Opto-Mechanics,” IEEE Photon. Technol. Lett. 10(10), 1440–1442 (1998).
[CrossRef]

1991

K. Inoue, T. Kominato, and H. Toba, “Gain Equalization Using a Mach- Zehnder Optical Filter in Multistage Fiber Amplifiers,” IEEE Photon. Technol. Lett. 3(8), 718–720 (1991).
[CrossRef]

1990

C. R. Giles and D. J. Giovanni, “Dynamic gain equalization in two-stage fiber amplifiers,” IEEE Photon. Technol. Lett. 2(12), 866–868 (1990).
[CrossRef]

Asghari, M.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” IET Electr. Lett. 46, 3 (2010).

D. W. Zheng, B. T. Smith, and M. Asghari, “Improved efficiency Si-photonic attenuator,” Opt. Express 16(21), 16754–16765 (2008).
[CrossRef] [PubMed]

Baets, R.

Beckx, S.

Bienstman, P.

Bogaerts, W.

Bowers, J. E.

Bradley, J. B. D.

J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “‘Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

Bradley, J. D.

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[CrossRef]

Campbell, J. C.

S. M. Csutak, S. Dakshina-Murthy, and J. C. Campbell, “CMOS-Compatible Planar Silicon Waveguide-Grating-Coupler Photodetectors Fabricated on Silicon-on-Insulator (SOI) Substrates,” IEEE J. Quantum Electron. 38(5), 477–480 (2002).
[CrossRef]

Chetrit, Y.

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett. 18(23), 2442–2444 (2006).
[CrossRef]

Chow, C. W.

Y. Liu, C. W. Chow, C. H. Kwok, H. K. Tsang, and C. Lin, “Dynamic-channel-equalizer using in-line channel power monitor and electronic variable optical attenuator,” Opt. Commun. 272(1), 87–91 (2007).
[CrossRef]

Cohen, O.

Csutak, S. M.

S. M. Csutak, S. Dakshina-Murthy, and J. C. Campbell, “CMOS-Compatible Planar Silicon Waveguide-Grating-Coupler Photodetectors Fabricated on Silicon-on-Insulator (SOI) Substrates,” IEEE J. Quantum Electron. 38(5), 477–480 (2002).
[CrossRef]

Dakshina-Murthy, S.

S. M. Csutak, S. Dakshina-Murthy, and J. C. Campbell, “CMOS-Compatible Planar Silicon Waveguide-Grating-Coupler Photodetectors Fabricated on Silicon-on-Insulator (SOI) Substrates,” IEEE J. Quantum Electron. 38(5), 477–480 (2002).
[CrossRef]

Denault, S.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Doerr, C. R.

C. R. Doerr, R. Pafchek, and L. W. Stulz, “16-Band Integrated Dynamic Gain Equalization Filter With Less Than 2.8-dB Insertion Loss,” IEEE Photon. Technol. Lett. 14(3), 334–336 (2002).
[CrossRef]

Dosunmu, O.

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett. 18(23), 2442–2444 (2006).
[CrossRef]

Doylend, J. K.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” IET Electr. Lett. 46, 3 (2010).

Dumon, P.

Fang, A. W.

Ford, J. E.

J. E. Ford and J. A. Walker, “Dynamic Spectral Power Equalization Using Micro-Opto-Mechanics,” IEEE Photon. Technol. Lett. 10(10), 1440–1442 (1998).
[CrossRef]

Gan, F.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Geis, M. W.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Giles, C. R.

C. R. Giles and D. J. Giovanni, “Dynamic gain equalization in two-stage fiber amplifiers,” IEEE Photon. Technol. Lett. 2(12), 866–868 (1990).
[CrossRef]

Giovanni, D. J.

C. R. Giles and D. J. Giovanni, “Dynamic gain equalization in two-stage fiber amplifiers,” IEEE Photon. Technol. Lett. 2(12), 866–868 (1990).
[CrossRef]

Gou, S. H.

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[CrossRef]

Grein, M. E.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Gwilliam, R. M.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” IET Electr. Lett. 46, 3 (2010).

Inoue, K.

K. Inoue, T. Kominato, and H. Toba, “Gain Equalization Using a Mach- Zehnder Optical Filter in Multistage Fiber Amplifiers,” IEEE Photon. Technol. Lett. 3(8), 718–720 (1991).
[CrossRef]

Jessop, P. E.

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[CrossRef]

J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “‘Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

Jones, R.

Kaertner, F. X.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Knights, A. P.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” IET Electr. Lett. 46, 3 (2010).

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[CrossRef]

J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “‘Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

Kominato, T.

K. Inoue, T. Kominato, and H. Toba, “Gain Equalization Using a Mach- Zehnder Optical Filter in Multistage Fiber Amplifiers,” IEEE Photon. Technol. Lett. 3(8), 718–720 (1991).
[CrossRef]

Kwok, C. H.

Y. Liu, C. W. Chow, C. H. Kwok, H. K. Tsang, and C. Lin, “Dynamic-channel-equalizer using in-line channel power monitor and electronic variable optical attenuator,” Opt. Commun. 272(1), 87–91 (2007).
[CrossRef]

Lennon, D. M.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Lin, C.

Y. Liu, C. W. Chow, C. H. Kwok, H. K. Tsang, and C. Lin, “Dynamic-channel-equalizer using in-line channel power monitor and electronic variable optical attenuator,” Opt. Commun. 272(1), 87–91 (2007).
[CrossRef]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, C. W. Chow, C. H. Kwok, H. K. Tsang, and C. Lin, “Dynamic-channel-equalizer using in-line channel power monitor and electronic variable optical attenuator,” Opt. Commun. 272(1), 87–91 (2007).
[CrossRef]

Luff, B. J.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” IET Electr. Lett. 46, 3 (2010).

Luyssaert, B.

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Morse, M.

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett. 18(23), 2442–2444 (2006).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Pafchek, R.

C. R. Doerr, R. Pafchek, and L. W. Stulz, “16-Band Integrated Dynamic Gain Equalization Filter With Less Than 2.8-dB Insertion Loss,” IEEE Photon. Technol. Lett. 14(3), 334–336 (2002).
[CrossRef]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Paniccia, M. J.

Park, H.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Raday, O.

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Sarid, G.

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett. 18(23), 2442–2444 (2006).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Schulein, R. T.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Shafiiha, R.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” IET Electr. Lett. 46, 3 (2010).

Smith, B. T.

Spector, S. J.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Stulz, L. W.

C. R. Doerr, R. Pafchek, and L. W. Stulz, “16-Band Integrated Dynamic Gain Equalization Filter With Less Than 2.8-dB Insertion Loss,” IEEE Photon. Technol. Lett. 14(3), 334–336 (2002).
[CrossRef]

Sysak, M. N.

Taillaert, D.

Toba, H.

K. Inoue, T. Kominato, and H. Toba, “Gain Equalization Using a Mach- Zehnder Optical Filter in Multistage Fiber Amplifiers,” IEEE Photon. Technol. Lett. 3(8), 718–720 (1991).
[CrossRef]

Tsang, H. K.

Y. Liu, C. W. Chow, C. H. Kwok, H. K. Tsang, and C. Lin, “Dynamic-channel-equalizer using in-line channel power monitor and electronic variable optical attenuator,” Opt. Commun. 272(1), 87–91 (2007).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

Walker, J. A.

J. E. Ford and J. A. Walker, “Dynamic Spectral Power Equalization Using Micro-Opto-Mechanics,” IEEE Photon. Technol. Lett. 10(10), 1440–1442 (1998).
[CrossRef]

Wiaux, V.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yoon, J. U.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

Zheng, D. W.

Appl. Phys. Lett.

J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “‘Silicon waveguide integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[CrossRef]

IEEE J. Quantum Electron.

S. M. Csutak, S. Dakshina-Murthy, and J. C. Campbell, “CMOS-Compatible Planar Silicon Waveguide-Grating-Coupler Photodetectors Fabricated on Silicon-on-Insulator (SOI) Substrates,” IEEE J. Quantum Electron. 38(5), 477–480 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19(3), 152–154 (2007).
[CrossRef]

M. Morse, O. Dosunmu, G. Sarid, and Y. Chetrit, “Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules,” IEEE Photon. Technol. Lett. 18(23), 2442–2444 (2006).
[CrossRef]

C. R. Giles and D. J. Giovanni, “Dynamic gain equalization in two-stage fiber amplifiers,” IEEE Photon. Technol. Lett. 2(12), 866–868 (1990).
[CrossRef]

K. Inoue, T. Kominato, and H. Toba, “Gain Equalization Using a Mach- Zehnder Optical Filter in Multistage Fiber Amplifiers,” IEEE Photon. Technol. Lett. 3(8), 718–720 (1991).
[CrossRef]

J. E. Ford and J. A. Walker, “Dynamic Spectral Power Equalization Using Micro-Opto-Mechanics,” IEEE Photon. Technol. Lett. 10(10), 1440–1442 (1998).
[CrossRef]

C. R. Doerr, R. Pafchek, and L. W. Stulz, “16-Band Integrated Dynamic Gain Equalization Filter With Less Than 2.8-dB Insertion Loss,” IEEE Photon. Technol. Lett. 14(3), 334–336 (2002).
[CrossRef]

IET Electr. Lett.

J. K. Doylend, A. P. Knights, B. J. Luff, R. Shafiiha, M. Asghari, and R. M. Gwilliam, “Modifying functionality of variable optical attenuator to signal monitoring through defect engineering,” IET Electr. Lett. 46, 3 (2010).

J. Lightwave Technol.

J. Vac. Sci. Technol. A

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[CrossRef]

Nature

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Opt. Commun.

Y. Liu, C. W. Chow, C. H. Kwok, H. K. Tsang, and C. Lin, “Dynamic-channel-equalizer using in-line channel power monitor and electronic variable optical attenuator,” Opt. Commun. 272(1), 87–91 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

I. Day, I. Evans, A. Knights, F. Hopper, S. Roberts, J. Johnston, S. Day, J. Luff, H. Tsang, and M. Asghari, “Tapered silicon waveguides for low insertion-loss highly efficient high-speed electronic variable attenuators”, Proc. IEEE Opt. Fiber Commun. Conf. 1, Mar. 23–28, pp. 249–251 (2003).

http://www.ni.com/labview/

http://www.epixfab.eu/

F. Van Laere, G. Roelkens, J. Schrauwen, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, and R. Baets, “Compact Grating Couplers Between Optical Fibers and Silicon-on-Insulator Photonic Wire Waveguides with 69% Coupling Efficiency”, Optical Fiber Communication Conference (OFC), PDP15 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the silicon photonic channel leveler showing grating-coupled input and output (bar-coupled path), MZI with tuner, and defect-mediated photodiode (cross-coupled path). The overall length of the MZI is 2.5 mm.

Fig. 2
Fig. 2

Optical output and photocurrent versus thermal tuning for silicon photonic monitored VOA with 1550 nm unpolarized input.

Fig. 3
Fig. 3

Test setup for channel leveler (left) using virtual circuit (right) used for feedback with constants C1, C2, and C3 given by Eq. (4) and Eq. (5). ECL=external cavity laser, PS=polarization scrambler, DUT=device under test, Amm=ammeter.

Fig. 4
Fig. 4

Output power variation vs. input power variation for wavelengths from 1530 to 1570 nm across a 7 - 10 dB dynamic range. The inset shows a close-up for 1530 nm – 1550 nm with error bars denoting standard deviation over the course of 90 feedback loop iterations.

Fig. 5
Fig. 5

Leveler dynamic range (using +/− 0.5 dB cutoff) and VOA extinction ratio vs. wavelength. Note that the dynamic ranges shown for 1530 nm and 1540 nm are conservative since the leveler output is flat at the highest input power tested.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T = 1 2 k ( 1 k ) ( 1 + cos θ )
P = α ( d P d V V + P r e f )
i = α ( d i d V V + i r e f )
V = P r e f ( d P d V ) i ( d i d V V + i r e f i )
V = c 1 V i + c 2 i + c 3

Metrics