Abstract

A liquid filled microstructured optical fiber (MOF) is used to detect x-rays. Numerical analysis and experimental observation leads to geometric fiber optics theory for MOF photon transmission. A model using this theory relates the quantity and energy of absorbed x-ray photons to transmitted MOF generated photons. Experimental measurements of MOF photon quantities compared with calculated values show good qualitative agreement. The difference between the calculated and measured values is discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wang and L. Wang, “Liquid-filled microstructured polymer fibers as monolithic liquid-core array fibers,” Appl. Opt. 48(5), 881–885 (2009).
    [CrossRef] [PubMed]
  2. T. Nasilowski, et al., “Sensing with photonic crystal fibers,” Intelligent Signal Processing, WISP 2007 IEEE International Symposium on, 1–6, (Oct. 2007).
  3. G. Vienne, et al., “Liquid core fibers based on hollow core microstructured fibers”, Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005. Pacific Rim Conference on, 551–555, (Aug. 2005).
  4. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
    [CrossRef] [PubMed]
  5. C. J. S. De Matos, C. M. Cordeiro, E. M. Dos Santos, J. S. Ong, A. Bozolan, and C. H. Brito Cruz, “Liquid-core, liquid-cladding photonic crystal fibers,” Opt. Express 15(18), 11207–11212 (2007).
    [CrossRef] [PubMed]
  6. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. L. Auguste, and J. M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005).
    [CrossRef] [PubMed]
  7. M. Lelek, F. Louradour, V. Couderc, P. Viale, S. Fevrier, J. L. Auguste, J. M. Blondy, and A. Barthelemy, “High sensitivity autocorrelator based on a fluorescent liquid core,” Appl. Phys. Lett. 89(6), 061117 (2006).
    [CrossRef]
  8. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres, (Imperial College Press, Coven Garden, London, 2005), Chap. 1.
  9. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  10. M. J. F. Digonnet, H. K. Kim, G. S. Kino, and S. Fan, “Understanding air-core photonic-bandgap fibers: Analogy to conventional fibers,” J. Lightwave Technol. 23(12), 4169–4177 (2005).
    [CrossRef]
  11. N. M. Litchinitser and E. Poliakov, “Anitiresonant guiding microstructured optical fibres for sensing applications,” Appl. Phys. B 81(2-3), 347–351 (2005).
    [CrossRef]
  12. H. Leutz, “Scintillating Fibre,” Nucl. Instrum. Methods Phys. Res. A 364(3), 422–448 (1995).
    [CrossRef]
  13. T. O. White, “Scintillating Fibres,” Nucl. Instrum. Methods Phys. Res. A 273(2-3), 820–825 (1988).
    [CrossRef]
  14. G. F. Knoll, Radiation Detection and Measurement, (John Wiley & Sons, New York, 2000), Chap. 8,14.
  15. C. Zorn, “A pedestrians guide to radiation damage in plastic scintillators,” Radiat. Phys. Chem. 41(1-2), 37–43 (1993).
    [CrossRef]
  16. Saint Gobian Liquid Scintillator Products, http://www.detectors.saint-gobain.com/Liquid-Scintillator.aspx .
  17. CUDOS Multipole Analysis Software for Microstructured Fiber: http:// www.physics.usyd.edu.au/cudos/research/old%20site/pcf.html .
  18. FIMMWAVE from Photon Design: http:// www.photond.com .
  19. A. W. Snyder, and J. D. Love, Optical Waveguide Theory, (Chapman and Hall, New York, 1983) Chap. 1–6.
  20. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971).
    [CrossRef] [PubMed]
  21. J. J. Fitzgerald, G. L. Brownell, and F. J. Mahoney, Mathematical Theory of Radiation Dosimetry, (Gordon and Breach Science, New York, 1967), Chap. 5.
  22. NIST x-ray absorption data for common materials: Plastic Scintillator (Vinyl toluene): http://physics.nist.gov/PhysRefData/XrayMassCoef/ComTab/vinyl.html .

2009 (1)

2007 (1)

2006 (2)

F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
[CrossRef] [PubMed]

M. Lelek, F. Louradour, V. Couderc, P. Viale, S. Fevrier, J. L. Auguste, J. M. Blondy, and A. Barthelemy, “High sensitivity autocorrelator based on a fluorescent liquid core,” Appl. Phys. Lett. 89(6), 061117 (2006).
[CrossRef]

2005 (3)

2003 (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

1995 (1)

H. Leutz, “Scintillating Fibre,” Nucl. Instrum. Methods Phys. Res. A 364(3), 422–448 (1995).
[CrossRef]

1993 (1)

C. Zorn, “A pedestrians guide to radiation damage in plastic scintillators,” Radiat. Phys. Chem. 41(1-2), 37–43 (1993).
[CrossRef]

1988 (1)

T. O. White, “Scintillating Fibres,” Nucl. Instrum. Methods Phys. Res. A 273(2-3), 820–825 (1988).
[CrossRef]

1971 (1)

Argyros, A.

Auguste, J. L.

M. Lelek, F. Louradour, V. Couderc, P. Viale, S. Fevrier, J. L. Auguste, J. M. Blondy, and A. Barthelemy, “High sensitivity autocorrelator based on a fluorescent liquid core,” Appl. Phys. Lett. 89(6), 061117 (2006).
[CrossRef]

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. L. Auguste, and J. M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005).
[CrossRef] [PubMed]

Barthelemy, A.

M. Lelek, F. Louradour, V. Couderc, P. Viale, S. Fevrier, J. L. Auguste, J. M. Blondy, and A. Barthelemy, “High sensitivity autocorrelator based on a fluorescent liquid core,” Appl. Phys. Lett. 89(6), 061117 (2006).
[CrossRef]

Blondy, J. M.

M. Lelek, F. Louradour, V. Couderc, P. Viale, S. Fevrier, J. L. Auguste, J. M. Blondy, and A. Barthelemy, “High sensitivity autocorrelator based on a fluorescent liquid core,” Appl. Phys. Lett. 89(6), 061117 (2006).
[CrossRef]

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. L. Auguste, and J. M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005).
[CrossRef] [PubMed]

Bozolan, A.

Brito Cruz, C. H.

Chinaud, J.

Cordeiro, C. M.

Couderc, V.

M. Lelek, F. Louradour, V. Couderc, P. Viale, S. Fevrier, J. L. Auguste, J. M. Blondy, and A. Barthelemy, “High sensitivity autocorrelator based on a fluorescent liquid core,” Appl. Phys. Lett. 89(6), 061117 (2006).
[CrossRef]

Cox, F. M.

De Matos, C. J. S.

Delaye, P.

Digonnet, M. J. F.

Dos Santos, E. M.

Fan, S.

Fevrier, S.

M. Lelek, F. Louradour, V. Couderc, P. Viale, S. Fevrier, J. L. Auguste, J. M. Blondy, and A. Barthelemy, “High sensitivity autocorrelator based on a fluorescent liquid core,” Appl. Phys. Lett. 89(6), 061117 (2006).
[CrossRef]

Février, S.

Frey, R.

Gloge, D.

Kim, H. K.

Kino, G. S.

Large, M. C. J.

Lelek, M.

M. Lelek, F. Louradour, V. Couderc, P. Viale, S. Fevrier, J. L. Auguste, J. M. Blondy, and A. Barthelemy, “High sensitivity autocorrelator based on a fluorescent liquid core,” Appl. Phys. Lett. 89(6), 061117 (2006).
[CrossRef]

Leutz, H.

H. Leutz, “Scintillating Fibre,” Nucl. Instrum. Methods Phys. Res. A 364(3), 422–448 (1995).
[CrossRef]

Litchinitser, N. M.

N. M. Litchinitser and E. Poliakov, “Anitiresonant guiding microstructured optical fibres for sensing applications,” Appl. Phys. B 81(2-3), 347–351 (2005).
[CrossRef]

Louradour, F.

M. Lelek, F. Louradour, V. Couderc, P. Viale, S. Fevrier, J. L. Auguste, J. M. Blondy, and A. Barthelemy, “High sensitivity autocorrelator based on a fluorescent liquid core,” Appl. Phys. Lett. 89(6), 061117 (2006).
[CrossRef]

Ong, J. S.

Poliakov, E.

N. M. Litchinitser and E. Poliakov, “Anitiresonant guiding microstructured optical fibres for sensing applications,” Appl. Phys. B 81(2-3), 347–351 (2005).
[CrossRef]

Roosen, G.

Rouvie, A.

Roy, P.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Viale, P.

M. Lelek, F. Louradour, V. Couderc, P. Viale, S. Fevrier, J. L. Auguste, J. M. Blondy, and A. Barthelemy, “High sensitivity autocorrelator based on a fluorescent liquid core,” Appl. Phys. Lett. 89(6), 061117 (2006).
[CrossRef]

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. L. Auguste, and J. M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005).
[CrossRef] [PubMed]

Wang, J.

Wang, L.

White, T. O.

T. O. White, “Scintillating Fibres,” Nucl. Instrum. Methods Phys. Res. A 273(2-3), 820–825 (1988).
[CrossRef]

Yiou, S.

Zorn, C.

C. Zorn, “A pedestrians guide to radiation damage in plastic scintillators,” Radiat. Phys. Chem. 41(1-2), 37–43 (1993).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

N. M. Litchinitser and E. Poliakov, “Anitiresonant guiding microstructured optical fibres for sensing applications,” Appl. Phys. B 81(2-3), 347–351 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

M. Lelek, F. Louradour, V. Couderc, P. Viale, S. Fevrier, J. L. Auguste, J. M. Blondy, and A. Barthelemy, “High sensitivity autocorrelator based on a fluorescent liquid core,” Appl. Phys. Lett. 89(6), 061117 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Nucl. Instrum. Methods Phys. Res. A (2)

H. Leutz, “Scintillating Fibre,” Nucl. Instrum. Methods Phys. Res. A 364(3), 422–448 (1995).
[CrossRef]

T. O. White, “Scintillating Fibres,” Nucl. Instrum. Methods Phys. Res. A 273(2-3), 820–825 (1988).
[CrossRef]

Opt. Express (3)

Radiat. Phys. Chem. (1)

C. Zorn, “A pedestrians guide to radiation damage in plastic scintillators,” Radiat. Phys. Chem. 41(1-2), 37–43 (1993).
[CrossRef]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other (10)

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres, (Imperial College Press, Coven Garden, London, 2005), Chap. 1.

T. Nasilowski, et al., “Sensing with photonic crystal fibers,” Intelligent Signal Processing, WISP 2007 IEEE International Symposium on, 1–6, (Oct. 2007).

G. Vienne, et al., “Liquid core fibers based on hollow core microstructured fibers”, Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005. Pacific Rim Conference on, 551–555, (Aug. 2005).

Saint Gobian Liquid Scintillator Products, http://www.detectors.saint-gobain.com/Liquid-Scintillator.aspx .

CUDOS Multipole Analysis Software for Microstructured Fiber: http:// www.physics.usyd.edu.au/cudos/research/old%20site/pcf.html .

FIMMWAVE from Photon Design: http:// www.photond.com .

A. W. Snyder, and J. D. Love, Optical Waveguide Theory, (Chapman and Hall, New York, 1983) Chap. 1–6.

G. F. Knoll, Radiation Detection and Measurement, (John Wiley & Sons, New York, 2000), Chap. 8,14.

J. J. Fitzgerald, G. L. Brownell, and F. J. Mahoney, Mathematical Theory of Radiation Dosimetry, (Gordon and Breach Science, New York, 1967), Chap. 5.

NIST x-ray absorption data for common materials: Plastic Scintillator (Vinyl toluene): http://physics.nist.gov/PhysRefData/XrayMassCoef/ComTab/vinyl.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Microstructured quartz optical fiber cross-section. Total fiber diameter is 125 microns with 168 air filled inclusions. These inclusions become fiber cores when filled with scintillator material.

Fig. 2
Fig. 2

(a) FIMMWAVE FEM model geometry, (b) CUDOS multipole model geometry. Note the center hole in the FIMMWAVE model is filled by using cladding material.

Fig. 3
Fig. 3

Emission of 425 nm photons using UV excitation on opposite end of fiber; liquid loss from the fiber end results in no emission.

Fig. 4
Fig. 4

Placement of CdTe detector and collimator for characterization of x-ray tube and taking fiber data.

Fig. 5
Fig. 5

Fiber photon counts versus tube voltage comparing calculated with measured counts.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

V = ( 2 π ρ / λ ) [ n i 2 n m 2 ] 1 2
Δ = ( n i 2 n m 2 ) 2 n i 2
N m V 2 2
Δ = 1 2 sin 2 θ c
P n c = 0 θ c sin ( φ ) d φ 2 = 1 cos ( θ c ) 2
η w g = P c o r e P 1 4 3 N m
N P ( E ) = ( 7.5 p h o t o n s k e V ) E N ( E )
I = I o e α l
N ( E ) = A r ( 1 e α ( E ) l ) N c o u n t ( E )
N c = N P P n c η d η w g d E

Metrics