Abstract

An Er3+:Yb3+:LuAl3(BO3)4 crystal doped with 24.1 at.% Yb3+ and 1.1 at.% Er3+ ions was grown by the flux method. The polarized spectroscopic properties related to the operation of 1.5–1.6 μm laser of the crystal were evaluated at room temperature. The laser properties of a 0.7-mm-thick, c-cut crystal were investigated in diode-end-pumped hemispherical and plano-plano cavities, respectively. Compared with those of Er3+:Yb3+:YAl3(BO3)4 crystal obtained under similar experimental conditions, higher maximum output peak power, higher slope efficiency, and lower threshold were achieved in the Er3+:Yb3+:LuAl3(BO3)4 crystal.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave laser operation of Yb:LuVO4,” Opt. Lett. 30(23), 3162–3164 (2005).
    [CrossRef] [PubMed]
  2. J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett. 32(22), 3266–3268 (2007).
    [CrossRef] [PubMed]
  3. V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2 and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon 1(2), 179–212 (2007).
    [CrossRef]
  4. N. I. Leonyuk, “Recent development in the Growth of RM3(BO3)4 crystals for science and modern applications,” Prog. Cryst. Growth Charact. Mater. 31(3-4), 279–312 (1995).
    [CrossRef]
  5. N. Leonyuk, V. Maltsev, E. Volkova, E. Koporulina, L. Nekrasova, N. Tolstik, and N. Kuleshov, “High-temperature crystallization of novel rare-earth borate materials: single crystal and thin films,” J. Phys.: Conf. Ser. 176, 012010 (2009).
    [CrossRef]
  6. P. Becker, “Borate materials in nonlinear optics,” Adv. Mater. 10(13), 979–992 (1998).
    [CrossRef]
  7. D D. Jaque, J. Capmany, and J. Garcı́a Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–327 (1999).
    [CrossRef]
  8. P. Dekker, P. Burns, J. Dawes, J. Piper, J. Li, X. Hu, and J. Wang, “Widely tunable yellow-green lasers based on the self-frequency-doubling material Yb:YAB,” J. Opt. Soc. Am. B 20(4), 706–712 (2003).
    [CrossRef]
  9. A. Brenier, C. Tu, Z. Zhu, and J. Li, “Diode pumped passive Q switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett. 90(7), 071103 (2007).
    [CrossRef]
  10. N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, “Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser,” Opt. Lett. 32(22), 3233–3235 (2007).
    [CrossRef] [PubMed]
  11. Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
    [CrossRef]
  12. Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties and laser performance of Er3+ and Yb3+ co-doped GdAl3(BO3)4 crystal,” IEEE J. Quantum Electron. 43, 950–956 (2007).
    [CrossRef]
  13. N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 —efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
    [CrossRef]
  14. Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “1.1 W diode-pumped Er:Yb laser at 1520 nm,” Opt. Lett. 32(18), 2759–2761 (2007).
    [CrossRef] [PubMed]
  15. J. Li, G. Xu, S. Han, J. Fan, and J. Wang, “Growth and optical properties of self-frequency-doubling laser crystal Yb:LuAl3(BO3)4,” J. Cryst. Growth 311(17), 4251–4254 (2009).
    [CrossRef]
  16. M. J. Weber, Handbook of optical materials(CRC press, 2003), p45.
  17. J. C. Souriau, R. Romero, C. Borel, C. Wyon, C. Li, and R. Moncorge, “Room-temperature diode-pumped continuous-wave SrY4(SiO4)3O:Yb3+,Er3+ crystal laser at 1554 nm,” Appl. Phys. Lett. 64(10), 1189–1191 (1994).
    [CrossRef]
  18. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19(17), 1343–1345 (1994).
    [CrossRef] [PubMed]
  19. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [CrossRef]
  20. T. Y. Fan and R. L. Byer, “Diode laser-pumped solid state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
    [CrossRef]
  21. S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium-ytterbium phosphate glass laser,” Appl. Phys. Lett. 68(19), 2621–2623 (1996).
    [CrossRef]
  22. M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Floch, “Dual tunable wavelength Er:Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
    [CrossRef]
  23. F. Zernike and P. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15(26), 999–1001 (1965).
    [CrossRef]
  24. B. Denker, B. Galagan, V. Osiko, S. Sverchkov, A. M. Balbashov, J. E. Hellstrom, V. Pasiskevicius, and F. Laurell, “Yb3+,Er3+:YAG at high temperature: Energy transfer and spectroscopic properties,” Opt. Commun. 271(1), 142–147 (2007).
    [CrossRef]

2009 (3)

N. Leonyuk, V. Maltsev, E. Volkova, E. Koporulina, L. Nekrasova, N. Tolstik, and N. Kuleshov, “High-temperature crystallization of novel rare-earth borate materials: single crystal and thin films,” J. Phys.: Conf. Ser. 176, 012010 (2009).
[CrossRef]

N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 —efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
[CrossRef]

J. Li, G. Xu, S. Han, J. Fan, and J. Wang, “Growth and optical properties of self-frequency-doubling laser crystal Yb:LuAl3(BO3)4,” J. Cryst. Growth 311(17), 4251–4254 (2009).
[CrossRef]

2007 (7)

Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “1.1 W diode-pumped Er:Yb laser at 1520 nm,” Opt. Lett. 32(18), 2759–2761 (2007).
[CrossRef] [PubMed]

Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties and laser performance of Er3+ and Yb3+ co-doped GdAl3(BO3)4 crystal,” IEEE J. Quantum Electron. 43, 950–956 (2007).
[CrossRef]

J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett. 32(22), 3266–3268 (2007).
[CrossRef] [PubMed]

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2 and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon 1(2), 179–212 (2007).
[CrossRef]

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Diode pumped passive Q switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett. 90(7), 071103 (2007).
[CrossRef]

N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, “Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser,” Opt. Lett. 32(22), 3233–3235 (2007).
[CrossRef] [PubMed]

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, A. M. Balbashov, J. E. Hellstrom, V. Pasiskevicius, and F. Laurell, “Yb3+,Er3+:YAG at high temperature: Energy transfer and spectroscopic properties,” Opt. Commun. 271(1), 142–147 (2007).
[CrossRef]

2006 (1)

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
[CrossRef]

2005 (1)

2003 (1)

1999 (1)

D D. Jaque, J. Capmany, and J. Garcı́a Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

1998 (2)

P. Becker, “Borate materials in nonlinear optics,” Adv. Mater. 10(13), 979–992 (1998).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Floch, “Dual tunable wavelength Er:Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

1996 (1)

S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium-ytterbium phosphate glass laser,” Appl. Phys. Lett. 68(19), 2621–2623 (1996).
[CrossRef]

1995 (1)

N. I. Leonyuk, “Recent development in the Growth of RM3(BO3)4 crystals for science and modern applications,” Prog. Cryst. Growth Charact. Mater. 31(3-4), 279–312 (1995).
[CrossRef]

1994 (2)

J. C. Souriau, R. Romero, C. Borel, C. Wyon, C. Li, and R. Moncorge, “Room-temperature diode-pumped continuous-wave SrY4(SiO4)3O:Yb3+,Er3+ crystal laser at 1554 nm,” Appl. Phys. Lett. 64(10), 1189–1191 (1994).
[CrossRef]

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19(17), 1343–1345 (1994).
[CrossRef] [PubMed]

1988 (1)

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[CrossRef]

1965 (1)

F. Zernike and P. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15(26), 999–1001 (1965).
[CrossRef]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[CrossRef]

Aguiló, M.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2 and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon 1(2), 179–212 (2007).
[CrossRef]

Alouini, M.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Floch, “Dual tunable wavelength Er:Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

Balbashov, A. M.

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, A. M. Balbashov, J. E. Hellstrom, V. Pasiskevicius, and F. Laurell, “Yb3+,Er3+:YAG at high temperature: Energy transfer and spectroscopic properties,” Opt. Commun. 271(1), 142–147 (2007).
[CrossRef]

Becker, P.

P. Becker, “Borate materials in nonlinear optics,” Adv. Mater. 10(13), 979–992 (1998).
[CrossRef]

Berman, P.

F. Zernike and P. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15(26), 999–1001 (1965).
[CrossRef]

Borel, C.

J. C. Souriau, R. Romero, C. Borel, C. Wyon, C. Li, and R. Moncorge, “Room-temperature diode-pumped continuous-wave SrY4(SiO4)3O:Yb3+,Er3+ crystal laser at 1554 nm,” Appl. Phys. Lett. 64(10), 1189–1191 (1994).
[CrossRef]

Brenier, A.

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Diode pumped passive Q switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett. 90(7), 071103 (2007).
[CrossRef]

Bretenaker, F.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Floch, “Dual tunable wavelength Er:Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

Brunel, M.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Floch, “Dual tunable wavelength Er:Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

Burns, P.

Byer, R. L.

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[CrossRef]

Capmany, J.

D D. Jaque, J. Capmany, and J. Garcı́a Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

Chen, Y. J.

Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties and laser performance of Er3+ and Yb3+ co-doped GdAl3(BO3)4 crystal,” IEEE J. Quantum Electron. 43, 950–956 (2007).
[CrossRef]

Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “1.1 W diode-pumped Er:Yb laser at 1520 nm,” Opt. Lett. 32(18), 2759–2761 (2007).
[CrossRef] [PubMed]

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
[CrossRef]

Cinta Pujol, M.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2 and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon 1(2), 179–212 (2007).
[CrossRef]

Dawes, J.

Dekker, P.

Denker, B.

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, A. M. Balbashov, J. E. Hellstrom, V. Pasiskevicius, and F. Laurell, “Yb3+,Er3+:YAG at high temperature: Energy transfer and spectroscopic properties,” Opt. Commun. 271(1), 142–147 (2007).
[CrossRef]

Díaz, F.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2 and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon 1(2), 179–212 (2007).
[CrossRef]

Dong, J.

Fan, J.

J. Li, G. Xu, S. Han, J. Fan, and J. Wang, “Growth and optical properties of self-frequency-doubling laser crystal Yb:LuAl3(BO3)4,” J. Cryst. Growth 311(17), 4251–4254 (2009).
[CrossRef]

Fan, T. Y.

Floch, A.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Floch, “Dual tunable wavelength Er:Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

Galagan, B.

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, A. M. Balbashov, J. E. Hellstrom, V. Pasiskevicius, and F. Laurell, “Yb3+,Er3+:YAG at high temperature: Energy transfer and spectroscopic properties,” Opt. Commun. 271(1), 142–147 (2007).
[CrossRef]

Garci´a Solé, J.

D D. Jaque, J. Capmany, and J. Garcı́a Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

Gong, X. H.

Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “1.1 W diode-pumped Er:Yb laser at 1520 nm,” Opt. Lett. 32(18), 2759–2761 (2007).
[CrossRef] [PubMed]

Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties and laser performance of Er3+ and Yb3+ co-doped GdAl3(BO3)4 crystal,” IEEE J. Quantum Electron. 43, 950–956 (2007).
[CrossRef]

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
[CrossRef]

Griebner, U.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2 and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon 1(2), 179–212 (2007).
[CrossRef]

J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave laser operation of Yb:LuVO4,” Opt. Lett. 30(23), 3162–3164 (2005).
[CrossRef] [PubMed]

Han, S.

J. Li, G. Xu, S. Han, J. Fan, and J. Wang, “Growth and optical properties of self-frequency-doubling laser crystal Yb:LuAl3(BO3)4,” J. Cryst. Growth 311(17), 4251–4254 (2009).
[CrossRef]

Hellstrom, J. E.

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, A. M. Balbashov, J. E. Hellstrom, V. Pasiskevicius, and F. Laurell, “Yb3+,Er3+:YAG at high temperature: Energy transfer and spectroscopic properties,” Opt. Commun. 271(1), 142–147 (2007).
[CrossRef]

Hu, X.

Huang, Y. D.

Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties and laser performance of Er3+ and Yb3+ co-doped GdAl3(BO3)4 crystal,” IEEE J. Quantum Electron. 43, 950–956 (2007).
[CrossRef]

Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “1.1 W diode-pumped Er:Yb laser at 1520 nm,” Opt. Lett. 32(18), 2759–2761 (2007).
[CrossRef] [PubMed]

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
[CrossRef]

Jaque, D D.

D D. Jaque, J. Capmany, and J. Garcı́a Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

Jiang, M.

Kaminskii, A. A.

Kisel, V. E.

Koporulina, E.

N. Leonyuk, V. Maltsev, E. Volkova, E. Koporulina, L. Nekrasova, N. Tolstik, and N. Kuleshov, “High-temperature crystallization of novel rare-earth borate materials: single crystal and thin films,” J. Phys.: Conf. Ser. 176, 012010 (2009).
[CrossRef]

Koporulina, E. V.

Kuleshov, N.

N. Leonyuk, V. Maltsev, E. Volkova, E. Koporulina, L. Nekrasova, N. Tolstik, and N. Kuleshov, “High-temperature crystallization of novel rare-earth borate materials: single crystal and thin films,” J. Phys.: Conf. Ser. 176, 012010 (2009).
[CrossRef]

Kuleshov, N. V.

Kurilchik, S. V.

Laporta, P.

S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium-ytterbium phosphate glass laser,” Appl. Phys. Lett. 68(19), 2621–2623 (1996).
[CrossRef]

Laurell, F.

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, A. M. Balbashov, J. E. Hellstrom, V. Pasiskevicius, and F. Laurell, “Yb3+,Er3+:YAG at high temperature: Energy transfer and spectroscopic properties,” Opt. Commun. 271(1), 142–147 (2007).
[CrossRef]

Leonyuk, N.

N. Leonyuk, V. Maltsev, E. Volkova, E. Koporulina, L. Nekrasova, N. Tolstik, and N. Kuleshov, “High-temperature crystallization of novel rare-earth borate materials: single crystal and thin films,” J. Phys.: Conf. Ser. 176, 012010 (2009).
[CrossRef]

Leonyuk, N. I.

N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 —efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
[CrossRef]

N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk, “Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl3(BO3)4 laser,” Opt. Lett. 32(22), 3233–3235 (2007).
[CrossRef] [PubMed]

N. I. Leonyuk, “Recent development in the Growth of RM3(BO3)4 crystals for science and modern applications,” Prog. Cryst. Growth Charact. Mater. 31(3-4), 279–312 (1995).
[CrossRef]

Li, C.

J. C. Souriau, R. Romero, C. Borel, C. Wyon, C. Li, and R. Moncorge, “Room-temperature diode-pumped continuous-wave SrY4(SiO4)3O:Yb3+,Er3+ crystal laser at 1554 nm,” Appl. Phys. Lett. 64(10), 1189–1191 (1994).
[CrossRef]

Li, J.

J. Li, G. Xu, S. Han, J. Fan, and J. Wang, “Growth and optical properties of self-frequency-doubling laser crystal Yb:LuAl3(BO3)4,” J. Cryst. Growth 311(17), 4251–4254 (2009).
[CrossRef]

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Diode pumped passive Q switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett. 90(7), 071103 (2007).
[CrossRef]

P. Dekker, P. Burns, J. Dawes, J. Piper, J. Li, X. Hu, and J. Wang, “Widely tunable yellow-green lasers based on the self-frequency-doubling material Yb:YAB,” J. Opt. Soc. Am. B 20(4), 706–712 (2003).
[CrossRef]

Lin, Y. F.

Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “1.1 W diode-pumped Er:Yb laser at 1520 nm,” Opt. Lett. 32(18), 2759–2761 (2007).
[CrossRef] [PubMed]

Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties and laser performance of Er3+ and Yb3+ co-doped GdAl3(BO3)4 crystal,” IEEE J. Quantum Electron. 43, 950–956 (2007).
[CrossRef]

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
[CrossRef]

Liu, J.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2 and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon 1(2), 179–212 (2007).
[CrossRef]

J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave laser operation of Yb:LuVO4,” Opt. Lett. 30(23), 3162–3164 (2005).
[CrossRef] [PubMed]

Luo, Z. D.

Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties and laser performance of Er3+ and Yb3+ co-doped GdAl3(BO3)4 crystal,” IEEE J. Quantum Electron. 43, 950–956 (2007).
[CrossRef]

Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “1.1 W diode-pumped Er:Yb laser at 1520 nm,” Opt. Lett. 32(18), 2759–2761 (2007).
[CrossRef] [PubMed]

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
[CrossRef]

Maltsev, V.

N. Leonyuk, V. Maltsev, E. Volkova, E. Koporulina, L. Nekrasova, N. Tolstik, and N. Kuleshov, “High-temperature crystallization of novel rare-earth borate materials: single crystal and thin films,” J. Phys.: Conf. Ser. 176, 012010 (2009).
[CrossRef]

Maltsev, V. V.

Mateos, X.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2 and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon 1(2), 179–212 (2007).
[CrossRef]

J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave laser operation of Yb:LuVO4,” Opt. Lett. 30(23), 3162–3164 (2005).
[CrossRef] [PubMed]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[CrossRef]

Moncorge, R.

J. C. Souriau, R. Romero, C. Borel, C. Wyon, C. Li, and R. Moncorge, “Room-temperature diode-pumped continuous-wave SrY4(SiO4)3O:Yb3+,Er3+ crystal laser at 1554 nm,” Appl. Phys. Lett. 64(10), 1189–1191 (1994).
[CrossRef]

Nekrasova, L.

N. Leonyuk, V. Maltsev, E. Volkova, E. Koporulina, L. Nekrasova, N. Tolstik, and N. Kuleshov, “High-temperature crystallization of novel rare-earth borate materials: single crystal and thin films,” J. Phys.: Conf. Ser. 176, 012010 (2009).
[CrossRef]

Osiko, V.

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, A. M. Balbashov, J. E. Hellstrom, V. Pasiskevicius, and F. Laurell, “Yb3+,Er3+:YAG at high temperature: Energy transfer and spectroscopic properties,” Opt. Commun. 271(1), 142–147 (2007).
[CrossRef]

Pasiskevicius, V.

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, A. M. Balbashov, J. E. Hellstrom, V. Pasiskevicius, and F. Laurell, “Yb3+,Er3+:YAG at high temperature: Energy transfer and spectroscopic properties,” Opt. Commun. 271(1), 142–147 (2007).
[CrossRef]

Petrov, V.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2 and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon 1(2), 179–212 (2007).
[CrossRef]

J. Liu, X. Mateos, H. Zhang, J. Wang, M. Jiang, U. Griebner, and V. Petrov, “Continuous-wave laser operation of Yb:LuVO4,” Opt. Lett. 30(23), 3162–3164 (2005).
[CrossRef] [PubMed]

Pilipenko, O. V.

Piper, J.

Rivier, S.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2 and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon 1(2), 179–212 (2007).
[CrossRef]

Romero, R.

J. C. Souriau, R. Romero, C. Borel, C. Wyon, C. Li, and R. Moncorge, “Room-temperature diode-pumped continuous-wave SrY4(SiO4)3O:Yb3+,Er3+ crystal laser at 1554 nm,” Appl. Phys. Lett. 64(10), 1189–1191 (1994).
[CrossRef]

Silvestre, Ò.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2 and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon 1(2), 179–212 (2007).
[CrossRef]

Solé, R. M.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2 and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon 1(2), 179–212 (2007).
[CrossRef]

Souriau, J. C.

J. C. Souriau, R. Romero, C. Borel, C. Wyon, C. Li, and R. Moncorge, “Room-temperature diode-pumped continuous-wave SrY4(SiO4)3O:Yb3+,Er3+ crystal laser at 1554 nm,” Appl. Phys. Lett. 64(10), 1189–1191 (1994).
[CrossRef]

Sumida, D. S.

Svelto, C.

S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium-ytterbium phosphate glass laser,” Appl. Phys. Lett. 68(19), 2621–2623 (1996).
[CrossRef]

Sverchkov, S.

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, A. M. Balbashov, J. E. Hellstrom, V. Pasiskevicius, and F. Laurell, “Yb3+,Er3+:YAG at high temperature: Energy transfer and spectroscopic properties,” Opt. Commun. 271(1), 142–147 (2007).
[CrossRef]

Taccheo, S.

S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium-ytterbium phosphate glass laser,” Appl. Phys. Lett. 68(19), 2621–2623 (1996).
[CrossRef]

Tan, Q. G.

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
[CrossRef]

Tolstik, N.

N. Leonyuk, V. Maltsev, E. Volkova, E. Koporulina, L. Nekrasova, N. Tolstik, and N. Kuleshov, “High-temperature crystallization of novel rare-earth borate materials: single crystal and thin films,” J. Phys.: Conf. Ser. 176, 012010 (2009).
[CrossRef]

Tolstik, N. A.

Tu, C.

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Diode pumped passive Q switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett. 90(7), 071103 (2007).
[CrossRef]

Ueda, K.

Vallet, M.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Floch, “Dual tunable wavelength Er:Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

Volkova, E.

N. Leonyuk, V. Maltsev, E. Volkova, E. Koporulina, L. Nekrasova, N. Tolstik, and N. Kuleshov, “High-temperature crystallization of novel rare-earth borate materials: single crystal and thin films,” J. Phys.: Conf. Ser. 176, 012010 (2009).
[CrossRef]

Wang, J.

Wyon, C.

J. C. Souriau, R. Romero, C. Borel, C. Wyon, C. Li, and R. Moncorge, “Room-temperature diode-pumped continuous-wave SrY4(SiO4)3O:Yb3+,Er3+ crystal laser at 1554 nm,” Appl. Phys. Lett. 64(10), 1189–1191 (1994).
[CrossRef]

Xu, G.

J. Li, G. Xu, S. Han, J. Fan, and J. Wang, “Growth and optical properties of self-frequency-doubling laser crystal Yb:LuAl3(BO3)4,” J. Cryst. Growth 311(17), 4251–4254 (2009).
[CrossRef]

Zernike, F.

F. Zernike and P. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15(26), 999–1001 (1965).
[CrossRef]

Zhang, H.

Zhu, Z.

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Diode pumped passive Q switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett. 90(7), 071103 (2007).
[CrossRef]

Adv. Mater. (1)

P. Becker, “Borate materials in nonlinear optics,” Adv. Mater. 10(13), 979–992 (1998).
[CrossRef]

Appl. Phys. B (1)

N. A. Tolstik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, and N. I. Leonyuk, “Er,Yb:YAl3(BO3)4 —efficient 1.5 μm laser crystal,” Appl. Phys. B 97(2), 357–362 (2009).
[CrossRef]

Appl. Phys. Lett. (5)

Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “2.0 W diode-pumped Er:Yb:YAl3(BO3)4 laser at 1.5–1.6 μm,” Appl. Phys. Lett. 89(24), 241111 (2006).
[CrossRef]

J. C. Souriau, R. Romero, C. Borel, C. Wyon, C. Li, and R. Moncorge, “Room-temperature diode-pumped continuous-wave SrY4(SiO4)3O:Yb3+,Er3+ crystal laser at 1554 nm,” Appl. Phys. Lett. 64(10), 1189–1191 (1994).
[CrossRef]

D D. Jaque, J. Capmany, and J. Garcı́a Solé, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3 μm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Diode pumped passive Q switching of Yb3+-doped GdAl3(BO3)4 nonlinear laser crystal,” Appl. Phys. Lett. 90(7), 071103 (2007).
[CrossRef]

S. Taccheo, P. Laporta, and C. Svelto, “Widely tunable single-frequency erbium-ytterbium phosphate glass laser,” Appl. Phys. Lett. 68(19), 2621–2623 (1996).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid state lasers,” IEEE J. Quantum Electron. 24(6), 895–912 (1988).
[CrossRef]

Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic properties and laser performance of Er3+ and Yb3+ co-doped GdAl3(BO3)4 crystal,” IEEE J. Quantum Electron. 43, 950–956 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Floch, “Dual tunable wavelength Er:Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

J. Cryst. Growth (1)

J. Li, G. Xu, S. Han, J. Fan, and J. Wang, “Growth and optical properties of self-frequency-doubling laser crystal Yb:LuAl3(BO3)4,” J. Cryst. Growth 311(17), 4251–4254 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys.: Conf. Ser. (1)

N. Leonyuk, V. Maltsev, E. Volkova, E. Koporulina, L. Nekrasova, N. Tolstik, and N. Kuleshov, “High-temperature crystallization of novel rare-earth borate materials: single crystal and thin films,” J. Phys.: Conf. Ser. 176, 012010 (2009).
[CrossRef]

Laser Photon (1)

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2 and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photon 1(2), 179–212 (2007).
[CrossRef]

Opt. Commun. (1)

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, A. M. Balbashov, J. E. Hellstrom, V. Pasiskevicius, and F. Laurell, “Yb3+,Er3+:YAG at high temperature: Energy transfer and spectroscopic properties,” Opt. Commun. 271(1), 142–147 (2007).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[CrossRef]

Phys. Rev. Lett. (1)

F. Zernike and P. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15(26), 999–1001 (1965).
[CrossRef]

Prog. Cryst. Growth Charact. Mater. (1)

N. I. Leonyuk, “Recent development in the Growth of RM3(BO3)4 crystals for science and modern applications,” Prog. Cryst. Growth Charact. Mater. 31(3-4), 279–312 (1995).
[CrossRef]

Other (1)

M. J. Weber, Handbook of optical materials(CRC press, 2003), p45.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 2
Fig. 2

Room temperature polarized absorption (solid lines) and emission (dashed lines) spectra of Er3+:Yb3+:LuAB crystal in a range from 1450 to 1620 nm.

Fig. 3
Fig. 3

Room temperature α-polarized gain spectra of the 4I13/24I15/2 transition of Er3+:Yb3+:LuAB crystal in a range from 1500 to 1620 nm. The inset shows the fluorescence decay curve at 1550 nm of Er3+:Yb3+:LuAB crystal excited by 976 nm

Fig. 1
Fig. 1

Room temperature polarized absorption spectra of Er3+:Yb3+:LuAB crystal in a range from 900 to 1050 nm

Fig. 4
Fig. 4

Output peak power of the Er3+:Yb3+:LuAB laser as a function of absorbed pump peak power at 970 nm in a hemispherical cavity. The laser spectra at the highest absorbed pump peak powers are also shown.

Fig. 5
Fig. 5

Output peak power of the Er3+:Yb3+:LuAB laser as a function of absorbed pump peak power at 970 nm for the low and high output coupler transmissions (0.8% and 5.3%) in a plano-plano cavity. The laser spectra at the highest absorbed pump peak powers are also shown.

Fig. 6
Fig. 6

Output peak power of the Er3+:Yb3+:LuAB laser as a function of absorbed pump peak power at 970 nm for a medium coupler transmission of 2.8% in a plano-plano cavity. The laser spectra at different absorbed pump peak powers are also shown.

Tables (1)

Tables Icon

Table 1 Laser experimental results of Er3+:Yb3+:LuAB crystal in different cavities

Metrics