Abstract

Optical wireless links can offer a very large bandwidth and can act as a complementary technology to radio-frequency links. However, optical components nowadays are rather bulky. Therefore, we have investigated the potential of silicon photonics to fabricate integrated components for wireless optical communication. This paper presents a two-dimensional phased array antenna consisting of grating couplers that couple light off-chip. Wavelength steering of 0.24°/nm is presented, reducing the need of active phase modulators. The required steering range is 1.5°. The 3dB angular coverage range of these antennas is 0.007π sr with a directivity of more than 38dBi and antenna losses smaller than 3dB.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
    [CrossRef]
  2. K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34, 1477–1479 (2009).
    [CrossRef] [PubMed]
  3. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
    [CrossRef]
  4. R. J. Green, H. Joshi, M. D. Higgins, and M. S. Leeson, “Recent developments in indoor optical wireless systems,” IET Commun. Mag. 2, 3–10 (2008).
    [CrossRef]
  5. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
    [CrossRef]
  6. ePIXfab, “The silicon photonics platform,” http://www.epixfab.eu/.
  7. G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
    [CrossRef]
  8. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
    [CrossRef]
  9. N. Le Thomas, R. Houdré, M. V. Kotlyar, D. O’Brien, and T. E. Krauss, “Exploring light propagating in photonic crystals with Fourier optics,” J. Opt. Soc. Am. B 24, 2964–2971 (2007).
    [CrossRef]
  10. D. Vermeulen, S. Selvaraja, G. Verheyen, P. Lepage, W. Bogaerts, and G. Roelkens, “High-efficiency Silicon-On-Insulator Fiber-to-Chip Grating Couplers Using a Silicon Overlay,” in “Group IV Photonics,” (United States, 2009), p. FPd1.
  11. K. Van Acoleyen, H. Rogier, and R. Baets, “Feasibility of Integrated Optical Phased Arrays for Indoor Wireless Optical Links,” in “Optical Communication, 2009. ECOC ’09. 35th European Conference on,” (Vienna, Austria, 2009), p. P4.18.

2009 (2)

2008 (2)

R. J. Green, H. Joshi, M. D. Higgins, and M. S. Leeson, “Recent developments in indoor optical wireless systems,” IET Commun. Mag. 2, 3–10 (2008).
[CrossRef]

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

2007 (2)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

N. Le Thomas, R. Houdré, M. V. Kotlyar, D. O’Brien, and T. E. Krauss, “Exploring light propagating in photonic crystals with Fourier optics,” J. Opt. Soc. Am. B 24, 2964–2971 (2007).
[CrossRef]

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[CrossRef]

1996 (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Baets, R.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[CrossRef]

K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34, 1477–1479 (2009).
[CrossRef] [PubMed]

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[CrossRef]

Bogaerts, W.

Brision, S.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

Claes, T.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Dumon, P.

Fedeli, J. M.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Gautier, P.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

Green, R. J.

R. J. Green, H. Joshi, M. D. Higgins, and M. S. Leeson, “Recent developments in indoor optical wireless systems,” IET Commun. Mag. 2, 3–10 (2008).
[CrossRef]

Higgins, M. D.

R. J. Green, H. Joshi, M. D. Higgins, and M. S. Leeson, “Recent developments in indoor optical wireless systems,” IET Commun. Mag. 2, 3–10 (2008).
[CrossRef]

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Houdré, R.

Jaenen, P.

Jágerská, J.

Joshi, H.

R. J. Green, H. Joshi, M. D. Higgins, and M. S. Leeson, “Recent developments in indoor optical wireless systems,” IET Commun. Mag. 2, 3–10 (2008).
[CrossRef]

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[CrossRef]

Kotlyar, M. V.

Krauss, T. E.

Le Thomas, N.

Leeson, M. S.

R. J. Green, H. Joshi, M. D. Higgins, and M. S. Leeson, “Recent developments in indoor optical wireless systems,” IET Commun. Mag. 2, 3–10 (2008).
[CrossRef]

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Lyan, P.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

McManamon, P. F.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

O’Brien, D.

O’Faolain, L.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Roelkens, G.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

Scheerlinck, S.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Schrauwen, J.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Selvaraja, S. K.

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Taillaert, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Van Acoleyen, K.

Van Laere, F.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Van Thourhout, D.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[CrossRef]

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Vermeulen, D.

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

Watson, E. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

G. Roelkens, D. Vermeulen, D. Van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92, 131101 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

IET Commun. Mag. (1)

R. J. Green, H. Joshi, M. D. Higgins, and M. S. Leeson, “Recent developments in indoor optical wireless systems,” IET Commun. Mag. 2, 3–10 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Proc. IEEE (2)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[CrossRef]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[CrossRef]

Other (3)

ePIXfab, “The silicon photonics platform,” http://www.epixfab.eu/.

D. Vermeulen, S. Selvaraja, G. Verheyen, P. Lepage, W. Bogaerts, and G. Roelkens, “High-efficiency Silicon-On-Insulator Fiber-to-Chip Grating Couplers Using a Silicon Overlay,” in “Group IV Photonics,” (United States, 2009), p. FPd1.

K. Van Acoleyen, H. Rogier, and R. Baets, “Feasibility of Integrated Optical Phased Arrays for Indoor Wireless Optical Links,” in “Optical Communication, 2009. ECOC ’09. 35th European Conference on,” (Vienna, Austria, 2009), p. P4.18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 2.
Fig. 2.

Schematic view of the Fourier imaging setup: the backfocal plane of the microscope objective (MO) is brought back to the CCD camera by means of two lenses.

Fig. 3.
Fig. 3.

(a) Schematic view of a cross section of a grating coupler. (b) Far-field pattern of the focusing grating coupler at a wavelength of 1550nm. The FWHM width in the θ-direction is 4.8° and in the ϕ-direction is 9.6°. (c) Out-coupling angle θ (blue), FWHM θ (red) and FWHM ϕ (green) as a function of wavelength.

Fig. 4.
Fig. 4.

Theoretical (a) and measured (b) far-field pattern of a 2×2 OPA at a wavelength of 1550nm, the parameters are found in Table 1.

Fig. 5.
Fig. 5.

Cross section at ϕ = 0° of the far-field pattern of a (a) 2×2 and (b) 4×4 OPA at a wavelength of 1550nm, the parameters of the OPA are found in Table 1. The indicated peak has a width of (a) 0.66° and (b) 0.36°.

Fig. 6.
Fig. 6.

(a) Shift of the peak shown in Fig. 5 by changing the wavelength. (b) Schematic view of wavelength steering capability. The red region represents the shift of the FWHM of the envelope of our far-field pattern (i.e. the far-field pattern of one grating coupler), while the blue dashed lines represents the shift of the individual emission lobes with wavelength.

Tables (1)

Tables Icon

Table 1. Parameters of the measured OPAs.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

sin θ = Λ n eff , gc λ 0 n ct Λ ,
T ( θ , ϕ ) = Σ m = 0 M 1 Σ n = 0 N 1 A mn e j β mn e j k · s mn = Σ m = 0 M 1 Σ n = 0 N 1 A mn e j β mn e jk 0 [ m Λ x sin θ + n Λ y sin ϕ ] ,
β mn = n eff 2 π λ Δ L mn = mn eff 2 π λ Δ L ,
T ( θ , ϕ ) = e j [ ( k 0 Λ x sin θ k 0 n eff Δ L ) M 1 2 + ( k 0 Λ y sin ϕ ) N 1 2 ] sin ( M k 0 Λ x sin θ k 0 n eff Δ L 2 ) sin ( k 0 Λ x sin θ k 0 n eff Δ L 2 ) sin ( N k 0 Λ y sin ϕ 2 ) sin ( k 0 Λ y sin ϕ 2 ) .
sin θ = q λ Λ x + n eff Δ L Λ x ,
d θ d λ d sin θ d λ = q Λ x + d n eff d λ Δ L Λ x ,
D ( θ , ϕ ) = 4 π I ( θ , ϕ ) P tot ,

Metrics