Abstract

Lasing characteristics of randomly assembled ZnO nanowires (NWs) coated with different thickness of MgO layers are investigated. It is found that the MgO coated randomly assembled ZnO NWs demonstrate random lasing action and the formation of coherent optical feedback is dependent on the thickness of MgO coating. Pump threshold of the MgO coated randomly assembled ZnO NWs increases with the increase of MgO thickness. Nevertheless, the appropriate use of MgO coating can reduce the pump threshold by ~30% and the corresponding characteristic temperature can be improved by 28 K.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Klingshirn, “Luminescence of ZnO under high one-quantum and 2 quantum excitation,” Phys. Status Solidi B 71(2), 547–556 (1975).
    [CrossRef]
  2. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
    [CrossRef] [PubMed]
  3. H. Y. Yang, S. F. Yu, H. K. Liang, C. Pang, B. Yan, and T. Yu, “High-temperature lasing characteristics of randomly assembled ZnO nanowires with a ridge waveguide,” J. Appl. Phys. 106(4), 043102 (2009).
    [CrossRef]
  4. S. Y. Bae, H. W. Seo, and J. J. Park, “Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition,” J. Phys. Chem. B 108(17), 5206–5210 (2004).
    [CrossRef]
  5. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005).
    [CrossRef]
  6. C. L. Yang, J. N. Wang, W. K. Ge, L. Guo, S. H. Yang, and D. Z. J. Shen, “Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots,” J. Appl. Phys. 90(9), 4489 (2001).
    [CrossRef]
  7. N. O. V. Plank, H. J. Snaith, C. Ducati, J. S. Bendall, L. Schmidt-Mende, and M. E. Welland, “A simple low temperature synthesis route for ZnO-MgO core-shell nanowires,” Nanotechnology 19(46), 465603 (2008).
    [CrossRef] [PubMed]
  8. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79(10), 7983 (1996).
    [CrossRef]
  9. W. I. Park, D. H. Kim, S. W. Jung, and G.-C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett. 80(22), 4232 (2002).
    [CrossRef]
  10. Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang, D. P. Yu, C. P. Li, and L. Guo, “Enhanced field emission from ZnO nanorods via thermal annealing in oxygen,” Appl. Phys. Lett. 88(3), 033102 (2006).
    [CrossRef]
  11. J. H. Li, D. X. Zhao, X. Q. Meng, Z. Z. Zhang, J. Y. Zhang, D. Z. Shen, Y. M. Lu, and X. W. Fan, “Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method,” J. Phys. Chem. B 110(30), 14685–14687 (2006).
    [CrossRef] [PubMed]
  12. H. D. Li, S. F. Yu, S. P. Lau, E. S. P. Leong, H. Y. Yang, T. P. Chen, A. P. Abiyasa, and C. Y. Ng, “High-temperature lasing characteristics of ZnO epilayers,” Adv. Mater. 18(6), 771–774 (2006).
    [CrossRef]
  13. H. Y. Yang, S. P. Lau, S. F. Yu, A. P. Abiyasa, M. Tanemura, T. Okita, and H. Hatano, “High-temperature random lasing in ZnO nanoneedles,” Appl. Phys. Lett. 89(1), 011103 (2006).
    [CrossRef]
  14. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73(8), 1038 (1998).
    [CrossRef]

2009 (1)

H. Y. Yang, S. F. Yu, H. K. Liang, C. Pang, B. Yan, and T. Yu, “High-temperature lasing characteristics of randomly assembled ZnO nanowires with a ridge waveguide,” J. Appl. Phys. 106(4), 043102 (2009).
[CrossRef]

2008 (1)

N. O. V. Plank, H. J. Snaith, C. Ducati, J. S. Bendall, L. Schmidt-Mende, and M. E. Welland, “A simple low temperature synthesis route for ZnO-MgO core-shell nanowires,” Nanotechnology 19(46), 465603 (2008).
[CrossRef] [PubMed]

2006 (4)

Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang, D. P. Yu, C. P. Li, and L. Guo, “Enhanced field emission from ZnO nanorods via thermal annealing in oxygen,” Appl. Phys. Lett. 88(3), 033102 (2006).
[CrossRef]

J. H. Li, D. X. Zhao, X. Q. Meng, Z. Z. Zhang, J. Y. Zhang, D. Z. Shen, Y. M. Lu, and X. W. Fan, “Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method,” J. Phys. Chem. B 110(30), 14685–14687 (2006).
[CrossRef] [PubMed]

H. D. Li, S. F. Yu, S. P. Lau, E. S. P. Leong, H. Y. Yang, T. P. Chen, A. P. Abiyasa, and C. Y. Ng, “High-temperature lasing characteristics of ZnO epilayers,” Adv. Mater. 18(6), 771–774 (2006).
[CrossRef]

H. Y. Yang, S. P. Lau, S. F. Yu, A. P. Abiyasa, M. Tanemura, T. Okita, and H. Hatano, “High-temperature random lasing in ZnO nanoneedles,” Appl. Phys. Lett. 89(1), 011103 (2006).
[CrossRef]

2005 (1)

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005).
[CrossRef]

2004 (1)

S. Y. Bae, H. W. Seo, and J. J. Park, “Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition,” J. Phys. Chem. B 108(17), 5206–5210 (2004).
[CrossRef]

2002 (1)

W. I. Park, D. H. Kim, S. W. Jung, and G.-C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett. 80(22), 4232 (2002).
[CrossRef]

2001 (2)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

C. L. Yang, J. N. Wang, W. K. Ge, L. Guo, S. H. Yang, and D. Z. J. Shen, “Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots,” J. Appl. Phys. 90(9), 4489 (2001).
[CrossRef]

1998 (1)

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73(8), 1038 (1998).
[CrossRef]

1996 (1)

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79(10), 7983 (1996).
[CrossRef]

1975 (1)

C. Klingshirn, “Luminescence of ZnO under high one-quantum and 2 quantum excitation,” Phys. Status Solidi B 71(2), 547–556 (1975).
[CrossRef]

Abiyasa, A. P.

H. D. Li, S. F. Yu, S. P. Lau, E. S. P. Leong, H. Y. Yang, T. P. Chen, A. P. Abiyasa, and C. Y. Ng, “High-temperature lasing characteristics of ZnO epilayers,” Adv. Mater. 18(6), 771–774 (2006).
[CrossRef]

H. Y. Yang, S. P. Lau, S. F. Yu, A. P. Abiyasa, M. Tanemura, T. Okita, and H. Hatano, “High-temperature random lasing in ZnO nanoneedles,” Appl. Phys. Lett. 89(1), 011103 (2006).
[CrossRef]

An, J.

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005).
[CrossRef]

Bae, S. Y.

S. Y. Bae, H. W. Seo, and J. J. Park, “Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition,” J. Phys. Chem. B 108(17), 5206–5210 (2004).
[CrossRef]

Bagnall, D. M.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73(8), 1038 (1998).
[CrossRef]

Bendall, J. S.

N. O. V. Plank, H. J. Snaith, C. Ducati, J. S. Bendall, L. Schmidt-Mende, and M. E. Welland, “A simple low temperature synthesis route for ZnO-MgO core-shell nanowires,” Nanotechnology 19(46), 465603 (2008).
[CrossRef] [PubMed]

Chen, T. P.

H. D. Li, S. F. Yu, S. P. Lau, E. S. P. Leong, H. Y. Yang, T. P. Chen, A. P. Abiyasa, and C. Y. Ng, “High-temperature lasing characteristics of ZnO epilayers,” Adv. Mater. 18(6), 771–774 (2006).
[CrossRef]

Chen, Y. F.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73(8), 1038 (1998).
[CrossRef]

Ducati, C.

N. O. V. Plank, H. J. Snaith, C. Ducati, J. S. Bendall, L. Schmidt-Mende, and M. E. Welland, “A simple low temperature synthesis route for ZnO-MgO core-shell nanowires,” Nanotechnology 19(46), 465603 (2008).
[CrossRef] [PubMed]

Fan, X. W.

J. H. Li, D. X. Zhao, X. Q. Meng, Z. Z. Zhang, J. Y. Zhang, D. Z. Shen, Y. M. Lu, and X. W. Fan, “Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method,” J. Phys. Chem. B 110(30), 14685–14687 (2006).
[CrossRef] [PubMed]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Ge, W. K.

C. L. Yang, J. N. Wang, W. K. Ge, L. Guo, S. H. Yang, and D. Z. J. Shen, “Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots,” J. Appl. Phys. 90(9), 4489 (2001).
[CrossRef]

Gnade, B. E.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79(10), 7983 (1996).
[CrossRef]

Goto, T.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73(8), 1038 (1998).
[CrossRef]

Guo, L.

Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang, D. P. Yu, C. P. Li, and L. Guo, “Enhanced field emission from ZnO nanorods via thermal annealing in oxygen,” Appl. Phys. Lett. 88(3), 033102 (2006).
[CrossRef]

C. L. Yang, J. N. Wang, W. K. Ge, L. Guo, S. H. Yang, and D. Z. J. Shen, “Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots,” J. Appl. Phys. 90(9), 4489 (2001).
[CrossRef]

Hatano, H.

H. Y. Yang, S. P. Lau, S. F. Yu, A. P. Abiyasa, M. Tanemura, T. Okita, and H. Hatano, “High-temperature random lasing in ZnO nanoneedles,” Appl. Phys. Lett. 89(1), 011103 (2006).
[CrossRef]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Jung, S. W.

W. I. Park, D. H. Kim, S. W. Jung, and G.-C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett. 80(22), 4232 (2002).
[CrossRef]

Kim, D. H.

W. I. Park, D. H. Kim, S. W. Jung, and G.-C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett. 80(22), 4232 (2002).
[CrossRef]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Klingshirn, C.

C. Klingshirn, “Luminescence of ZnO under high one-quantum and 2 quantum excitation,” Phys. Status Solidi B 71(2), 547–556 (1975).
[CrossRef]

Lai, C. W.

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005).
[CrossRef]

Lau, S. P.

H. D. Li, S. F. Yu, S. P. Lau, E. S. P. Leong, H. Y. Yang, T. P. Chen, A. P. Abiyasa, and C. Y. Ng, “High-temperature lasing characteristics of ZnO epilayers,” Adv. Mater. 18(6), 771–774 (2006).
[CrossRef]

H. Y. Yang, S. P. Lau, S. F. Yu, A. P. Abiyasa, M. Tanemura, T. Okita, and H. Hatano, “High-temperature random lasing in ZnO nanoneedles,” Appl. Phys. Lett. 89(1), 011103 (2006).
[CrossRef]

Leong, E. S. P.

H. D. Li, S. F. Yu, S. P. Lau, E. S. P. Leong, H. Y. Yang, T. P. Chen, A. P. Abiyasa, and C. Y. Ng, “High-temperature lasing characteristics of ZnO epilayers,” Adv. Mater. 18(6), 771–774 (2006).
[CrossRef]

Li, C. P.

Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang, D. P. Yu, C. P. Li, and L. Guo, “Enhanced field emission from ZnO nanorods via thermal annealing in oxygen,” Appl. Phys. Lett. 88(3), 033102 (2006).
[CrossRef]

Li, H. D.

H. D. Li, S. F. Yu, S. P. Lau, E. S. P. Leong, H. Y. Yang, T. P. Chen, A. P. Abiyasa, and C. Y. Ng, “High-temperature lasing characteristics of ZnO epilayers,” Adv. Mater. 18(6), 771–774 (2006).
[CrossRef]

Li, J. H.

J. H. Li, D. X. Zhao, X. Q. Meng, Z. Z. Zhang, J. Y. Zhang, D. Z. Shen, Y. M. Lu, and X. W. Fan, “Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method,” J. Phys. Chem. B 110(30), 14685–14687 (2006).
[CrossRef] [PubMed]

Liang, H. K.

H. Y. Yang, S. F. Yu, H. K. Liang, C. Pang, B. Yan, and T. Yu, “High-temperature lasing characteristics of randomly assembled ZnO nanowires with a ridge waveguide,” J. Appl. Phys. 106(4), 043102 (2009).
[CrossRef]

Lu, Y. M.

J. H. Li, D. X. Zhao, X. Q. Meng, Z. Z. Zhang, J. Y. Zhang, D. Z. Shen, Y. M. Lu, and X. W. Fan, “Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method,” J. Phys. Chem. B 110(30), 14685–14687 (2006).
[CrossRef] [PubMed]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Meng, X. Q.

J. H. Li, D. X. Zhao, X. Q. Meng, Z. Z. Zhang, J. Y. Zhang, D. Z. Shen, Y. M. Lu, and X. W. Fan, “Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method,” J. Phys. Chem. B 110(30), 14685–14687 (2006).
[CrossRef] [PubMed]

Ng, C. Y.

H. D. Li, S. F. Yu, S. P. Lau, E. S. P. Leong, H. Y. Yang, T. P. Chen, A. P. Abiyasa, and C. Y. Ng, “High-temperature lasing characteristics of ZnO epilayers,” Adv. Mater. 18(6), 771–774 (2006).
[CrossRef]

Okita, T.

H. Y. Yang, S. P. Lau, S. F. Yu, A. P. Abiyasa, M. Tanemura, T. Okita, and H. Hatano, “High-temperature random lasing in ZnO nanoneedles,” Appl. Phys. Lett. 89(1), 011103 (2006).
[CrossRef]

Ong, H. C.

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005).
[CrossRef]

Pang, C.

H. Y. Yang, S. F. Yu, H. K. Liang, C. Pang, B. Yan, and T. Yu, “High-temperature lasing characteristics of randomly assembled ZnO nanowires with a ridge waveguide,” J. Appl. Phys. 106(4), 043102 (2009).
[CrossRef]

Park, J. J.

S. Y. Bae, H. W. Seo, and J. J. Park, “Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition,” J. Phys. Chem. B 108(17), 5206–5210 (2004).
[CrossRef]

Park, W. I.

W. I. Park, D. H. Kim, S. W. Jung, and G.-C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett. 80(22), 4232 (2002).
[CrossRef]

Plank, N. O. V.

N. O. V. Plank, H. J. Snaith, C. Ducati, J. S. Bendall, L. Schmidt-Mende, and M. E. Welland, “A simple low temperature synthesis route for ZnO-MgO core-shell nanowires,” Nanotechnology 19(46), 465603 (2008).
[CrossRef] [PubMed]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Schmidt-Mende, L.

N. O. V. Plank, H. J. Snaith, C. Ducati, J. S. Bendall, L. Schmidt-Mende, and M. E. Welland, “A simple low temperature synthesis route for ZnO-MgO core-shell nanowires,” Nanotechnology 19(46), 465603 (2008).
[CrossRef] [PubMed]

Seager, C. H.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79(10), 7983 (1996).
[CrossRef]

Seo, H. W.

S. Y. Bae, H. W. Seo, and J. J. Park, “Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition,” J. Phys. Chem. B 108(17), 5206–5210 (2004).
[CrossRef]

Shen, D. Z.

J. H. Li, D. X. Zhao, X. Q. Meng, Z. Z. Zhang, J. Y. Zhang, D. Z. Shen, Y. M. Lu, and X. W. Fan, “Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method,” J. Phys. Chem. B 110(30), 14685–14687 (2006).
[CrossRef] [PubMed]

Shen, D. Z. J.

C. L. Yang, J. N. Wang, W. K. Ge, L. Guo, S. H. Yang, and D. Z. J. Shen, “Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots,” J. Appl. Phys. 90(9), 4489 (2001).
[CrossRef]

Shen, M. Y.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73(8), 1038 (1998).
[CrossRef]

Snaith, H. J.

N. O. V. Plank, H. J. Snaith, C. Ducati, J. S. Bendall, L. Schmidt-Mende, and M. E. Welland, “A simple low temperature synthesis route for ZnO-MgO core-shell nanowires,” Nanotechnology 19(46), 465603 (2008).
[CrossRef] [PubMed]

Song, X. F.

Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang, D. P. Yu, C. P. Li, and L. Guo, “Enhanced field emission from ZnO nanorods via thermal annealing in oxygen,” Appl. Phys. Lett. 88(3), 033102 (2006).
[CrossRef]

Tallant, D. R.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79(10), 7983 (1996).
[CrossRef]

Tanemura, M.

H. Y. Yang, S. P. Lau, S. F. Yu, A. P. Abiyasa, M. Tanemura, T. Okita, and H. Hatano, “High-temperature random lasing in ZnO nanoneedles,” Appl. Phys. Lett. 89(1), 011103 (2006).
[CrossRef]

Vanheusden, K.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79(10), 7983 (1996).
[CrossRef]

Voigt, J. A.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79(10), 7983 (1996).
[CrossRef]

Wang, J. N.

C. L. Yang, J. N. Wang, W. K. Ge, L. Guo, S. H. Yang, and D. Z. J. Shen, “Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots,” J. Appl. Phys. 90(9), 4489 (2001).
[CrossRef]

Warren, W. L.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79(10), 7983 (1996).
[CrossRef]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Welland, M. E.

N. O. V. Plank, H. J. Snaith, C. Ducati, J. S. Bendall, L. Schmidt-Mende, and M. E. Welland, “A simple low temperature synthesis route for ZnO-MgO core-shell nanowires,” Nanotechnology 19(46), 465603 (2008).
[CrossRef] [PubMed]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Xu, X. Y.

Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang, D. P. Yu, C. P. Li, and L. Guo, “Enhanced field emission from ZnO nanorods via thermal annealing in oxygen,” Appl. Phys. Lett. 88(3), 033102 (2006).
[CrossRef]

Yan, B.

H. Y. Yang, S. F. Yu, H. K. Liang, C. Pang, B. Yan, and T. Yu, “High-temperature lasing characteristics of randomly assembled ZnO nanowires with a ridge waveguide,” J. Appl. Phys. 106(4), 043102 (2009).
[CrossRef]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yang, C. L.

C. L. Yang, J. N. Wang, W. K. Ge, L. Guo, S. H. Yang, and D. Z. J. Shen, “Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots,” J. Appl. Phys. 90(9), 4489 (2001).
[CrossRef]

Yang, H. Y.

H. Y. Yang, S. F. Yu, H. K. Liang, C. Pang, B. Yan, and T. Yu, “High-temperature lasing characteristics of randomly assembled ZnO nanowires with a ridge waveguide,” J. Appl. Phys. 106(4), 043102 (2009).
[CrossRef]

H. Y. Yang, S. P. Lau, S. F. Yu, A. P. Abiyasa, M. Tanemura, T. Okita, and H. Hatano, “High-temperature random lasing in ZnO nanoneedles,” Appl. Phys. Lett. 89(1), 011103 (2006).
[CrossRef]

H. D. Li, S. F. Yu, S. P. Lau, E. S. P. Leong, H. Y. Yang, T. P. Chen, A. P. Abiyasa, and C. Y. Ng, “High-temperature lasing characteristics of ZnO epilayers,” Adv. Mater. 18(6), 771–774 (2006).
[CrossRef]

Yang, P.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Yang, S. H.

C. L. Yang, J. N. Wang, W. K. Ge, L. Guo, S. H. Yang, and D. Z. J. Shen, “Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots,” J. Appl. Phys. 90(9), 4489 (2001).
[CrossRef]

Yao, T.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73(8), 1038 (1998).
[CrossRef]

Yi, G.-C.

W. I. Park, D. H. Kim, S. W. Jung, and G.-C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett. 80(22), 4232 (2002).
[CrossRef]

Yu, D. P.

Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang, D. P. Yu, C. P. Li, and L. Guo, “Enhanced field emission from ZnO nanorods via thermal annealing in oxygen,” Appl. Phys. Lett. 88(3), 033102 (2006).
[CrossRef]

Yu, S. F.

H. Y. Yang, S. F. Yu, H. K. Liang, C. Pang, B. Yan, and T. Yu, “High-temperature lasing characteristics of randomly assembled ZnO nanowires with a ridge waveguide,” J. Appl. Phys. 106(4), 043102 (2009).
[CrossRef]

H. D. Li, S. F. Yu, S. P. Lau, E. S. P. Leong, H. Y. Yang, T. P. Chen, A. P. Abiyasa, and C. Y. Ng, “High-temperature lasing characteristics of ZnO epilayers,” Adv. Mater. 18(6), 771–774 (2006).
[CrossRef]

H. Y. Yang, S. P. Lau, S. F. Yu, A. P. Abiyasa, M. Tanemura, T. Okita, and H. Hatano, “High-temperature random lasing in ZnO nanoneedles,” Appl. Phys. Lett. 89(1), 011103 (2006).
[CrossRef]

Yu, T.

H. Y. Yang, S. F. Yu, H. K. Liang, C. Pang, B. Yan, and T. Yu, “High-temperature lasing characteristics of randomly assembled ZnO nanowires with a ridge waveguide,” J. Appl. Phys. 106(4), 043102 (2009).
[CrossRef]

Zhang, J. Y.

J. H. Li, D. X. Zhao, X. Q. Meng, Z. Z. Zhang, J. Y. Zhang, D. Z. Shen, Y. M. Lu, and X. W. Fan, “Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method,” J. Phys. Chem. B 110(30), 14685–14687 (2006).
[CrossRef] [PubMed]

Zhang, X. Z.

Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang, D. P. Yu, C. P. Li, and L. Guo, “Enhanced field emission from ZnO nanorods via thermal annealing in oxygen,” Appl. Phys. Lett. 88(3), 033102 (2006).
[CrossRef]

Zhang, Z. Z.

J. H. Li, D. X. Zhao, X. Q. Meng, Z. Z. Zhang, J. Y. Zhang, D. Z. Shen, Y. M. Lu, and X. W. Fan, “Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method,” J. Phys. Chem. B 110(30), 14685–14687 (2006).
[CrossRef] [PubMed]

Zhao, D. X.

J. H. Li, D. X. Zhao, X. Q. Meng, Z. Z. Zhang, J. Y. Zhang, D. Z. Shen, Y. M. Lu, and X. W. Fan, “Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method,” J. Phys. Chem. B 110(30), 14685–14687 (2006).
[CrossRef] [PubMed]

Zhao, Q.

Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang, D. P. Yu, C. P. Li, and L. Guo, “Enhanced field emission from ZnO nanorods via thermal annealing in oxygen,” Appl. Phys. Lett. 88(3), 033102 (2006).
[CrossRef]

Zhu, Z.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73(8), 1038 (1998).
[CrossRef]

Adv. Mater. (1)

H. D. Li, S. F. Yu, S. P. Lau, E. S. P. Leong, H. Y. Yang, T. P. Chen, A. P. Abiyasa, and C. Y. Ng, “High-temperature lasing characteristics of ZnO epilayers,” Adv. Mater. 18(6), 771–774 (2006).
[CrossRef]

Appl. Phys. Lett. (5)

H. Y. Yang, S. P. Lau, S. F. Yu, A. P. Abiyasa, M. Tanemura, T. Okita, and H. Hatano, “High-temperature random lasing in ZnO nanoneedles,” Appl. Phys. Lett. 89(1), 011103 (2006).
[CrossRef]

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett. 73(8), 1038 (1998).
[CrossRef]

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86(25), 251105 (2005).
[CrossRef]

W. I. Park, D. H. Kim, S. W. Jung, and G.-C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett. 80(22), 4232 (2002).
[CrossRef]

Q. Zhao, X. Y. Xu, X. F. Song, X. Z. Zhang, D. P. Yu, C. P. Li, and L. Guo, “Enhanced field emission from ZnO nanorods via thermal annealing in oxygen,” Appl. Phys. Lett. 88(3), 033102 (2006).
[CrossRef]

J. Appl. Phys. (3)

C. L. Yang, J. N. Wang, W. K. Ge, L. Guo, S. H. Yang, and D. Z. J. Shen, “Enhanced ultraviolet emission and optical properties in polyvinyl pyrrolidone surface modified ZnO quantum dots,” J. Appl. Phys. 90(9), 4489 (2001).
[CrossRef]

H. Y. Yang, S. F. Yu, H. K. Liang, C. Pang, B. Yan, and T. Yu, “High-temperature lasing characteristics of randomly assembled ZnO nanowires with a ridge waveguide,” J. Appl. Phys. 106(4), 043102 (2009).
[CrossRef]

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys. 79(10), 7983 (1996).
[CrossRef]

J. Phys. Chem. B (2)

S. Y. Bae, H. W. Seo, and J. J. Park, “Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition,” J. Phys. Chem. B 108(17), 5206–5210 (2004).
[CrossRef]

J. H. Li, D. X. Zhao, X. Q. Meng, Z. Z. Zhang, J. Y. Zhang, D. Z. Shen, Y. M. Lu, and X. W. Fan, “Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method,” J. Phys. Chem. B 110(30), 14685–14687 (2006).
[CrossRef] [PubMed]

Nanotechnology (1)

N. O. V. Plank, H. J. Snaith, C. Ducati, J. S. Bendall, L. Schmidt-Mende, and M. E. Welland, “A simple low temperature synthesis route for ZnO-MgO core-shell nanowires,” Nanotechnology 19(46), 465603 (2008).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

C. Klingshirn, “Luminescence of ZnO under high one-quantum and 2 quantum excitation,” Phys. Status Solidi B 71(2), 547–556 (1975).
[CrossRef]

Science (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) SEM images of the ZnO NWs, (b) XRD pattern of the sample, (c) TEM image of ZnO NWs and (d) HRTEM image of a single ZnO NW. The arrow indicates the lattice distortion on the surface of NW and the insert is the enlarged HRTEM image of the NW.

Fig. 2
Fig. 2

(a) SEM image and (b) EDS spectrum of MgO coated ZnO NWs. (c) TEM image of a single ZnO NW coated with amorphous MgO thin layer and the insert shows the composition distribution of Zn and Mg. (d) HRTEM image of the MgO layer and (e) interface of ZnO NW and amorphous MgO layer.

Fig. 3
Fig. 3

SEM images of the ZnO NWs coated with different thickness of MgO layers. (a) ~75, (b) ~95 and (c) 150 nm thick of MgO layers.

Fig. 4
Fig. 4

Room temperature PL spectra of the randomly assembled ZnO NWs with and without MgO coating.

Fig. 5
Fig. 5

Light-light curves of the randomly assembled ZnO NWs with and without MgO coating. The inset plots P th versus thickness of MgO layer.

Fig. 6
Fig. 6

Room-temperature emission spectra of the randomly assembled ZnO NWs with and without MgO coating. (a) no MgO coating, (b) 30, (c) 75 and (d) 150 nm thick MgO coating. The samples were optically pumped at ~1.02, ~1.2 and ~1.5 × P th.

Fig. 7
Fig. 7

Fourier transform profile of the lasing spectra of the randomly assembled ZnO NWs with and without MgO coating. The insert schematic shows the possibility on the formation of random cavity inside the randomly assembled ZnO NWs.

Fig. 8
Fig. 8

Plots of P th versus T of randomly assembled ZnO NWs with and without MgO coating. The inset shows the corresponding peak wavelength energy versus T.

Metrics