Abstract

An amplified cholesteric liquid crystal (CLC) laser performance is demonstrated by utilizing a binary-dye mixture (with 62 wt% DCM and 38 wt% PM597) as the active medium and an external stable resonator. The measured results show that the laser efficiency is enhanced as compared to the highest efficiency of each individual dye. Furthermore, using such an active CLC in an external stable resonator leads to a ~92X improved efficiency over the single CLC laser. In this instance, the binary-dye doped CLC simultaneously functions as laser oscillator and amplifier.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
    [CrossRef]
  2. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
    [CrossRef]
  3. K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, and S. M. Kelly, “Stokes parameter studies of spontaneous emission from chiral nematic liquid crystals as a one-dimensional photonic stopband crystal: experiment and theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041706 (2005).
    [CrossRef] [PubMed]
  4. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
    [CrossRef]
  5. W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2005).
    [CrossRef]
  6. S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. SID 14, 565–573 (2006).
  7. F. Araoka, K. C. Shin, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94(1), 279–283 (2003).
    [CrossRef]
  8. K. C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43(2), 631–636 (2004).
    [CrossRef]
  9. Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14(9), 3906–3916 (2006).
    [CrossRef] [PubMed]
  10. Y. Zhou, Y. Huang, Z. Ge, L. P. Chen, Q. Hong, T. X. Wu, and S. T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
    [CrossRef]
  11. T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741–3743 (2002).
    [CrossRef]
  12. J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14(10), 746–749 (2002).
    [CrossRef]
  13. Y. Zhou, Y. Huang, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87(23), 231107 (2005).
    [CrossRef]
  14. Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
    [CrossRef]
  15. Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, Y. Takao, A. Fujii, M. Ozaki, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation,” Opt. Express 15(2), 616–622 (2007).
    [CrossRef] [PubMed]
  16. J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31(2), 179–194 (2003).
    [CrossRef]
  17. P. W. Milonni, and J. H. Eberly, Lasers (John Wiley & Sons, 1988).
  18. H. Shirvani-Mahdavi, E. Mohajerani, and S. T. Wu, “Circularly polarized high-efficiency cholesteric liquid crystal lasers with a tunable nematic phase retarder,” Opt. Express 18(5), 5021–5027 (2010).
    [CrossRef] [PubMed]

2010

2007

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[CrossRef]

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, Y. Takao, A. Fujii, M. Ozaki, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation,” Opt. Express 15(2), 616–622 (2007).
[CrossRef] [PubMed]

2006

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. SID 14, 565–573 (2006).

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14(9), 3906–3916 (2006).
[CrossRef] [PubMed]

Y. Zhou, Y. Huang, Z. Ge, L. P. Chen, Q. Hong, T. X. Wu, and S. T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[CrossRef]

2005

K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, and S. M. Kelly, “Stokes parameter studies of spontaneous emission from chiral nematic liquid crystals as a one-dimensional photonic stopband crystal: experiment and theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041706 (2005).
[CrossRef] [PubMed]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2005).
[CrossRef]

Y. Zhou, Y. Huang, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87(23), 231107 (2005).
[CrossRef]

2004

K. C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43(2), 631–636 (2004).
[CrossRef]

2003

F. Araoka, K. C. Shin, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94(1), 279–283 (2003).
[CrossRef]

J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31(2), 179–194 (2003).
[CrossRef]

2002

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741–3743 (2002).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14(10), 746–749 (2002).
[CrossRef]

1998

1994

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Abbate, G.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2005).
[CrossRef]

Aldred, M. P.

K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, and S. M. Kelly, “Stokes parameter studies of spontaneous emission from chiral nematic liquid crystals as a one-dimensional photonic stopband crystal: experiment and theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041706 (2005).
[CrossRef] [PubMed]

Araoka, F.

K. C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43(2), 631–636 (2004).
[CrossRef]

F. Araoka, K. C. Shin, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94(1), 279–283 (2003).
[CrossRef]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Cao, W.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2005).
[CrossRef]

Chen, L. P.

Y. Zhou, Y. Huang, Z. Ge, L. P. Chen, Q. Hong, T. X. Wu, and S. T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[CrossRef]

Coles, H. J.

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. SID 14, 565–573 (2006).

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Fan, B.

Finkelmann, H.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14(10), 746–749 (2002).
[CrossRef]

Ford, A. D.

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. SID 14, 565–573 (2006).

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

Fujii, A.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[CrossRef]

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, Y. Takao, A. Fujii, M. Ozaki, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation,” Opt. Express 15(2), 616–622 (2007).
[CrossRef] [PubMed]

Funamoto, K.

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741–3743 (2002).
[CrossRef]

Ge, Z.

Y. Zhou, Y. Huang, Z. Ge, L. P. Chen, Q. Hong, T. X. Wu, and S. T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[CrossRef]

Genack, A. Z.

Gillespie, C.

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. SID 14, 565–573 (2006).

Hadeler, O.

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. SID 14, 565–573 (2006).

Hong, Q.

Y. Zhou, Y. Huang, Z. Ge, L. P. Chen, Q. Hong, T. X. Wu, and S. T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[CrossRef]

Huang, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, Y. Takao, A. Fujii, M. Ozaki, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation,” Opt. Express 15(2), 616–622 (2007).
[CrossRef] [PubMed]

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[CrossRef]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14(9), 3906–3916 (2006).
[CrossRef] [PubMed]

Y. Zhou, Y. Huang, Z. Ge, L. P. Chen, Q. Hong, T. X. Wu, and S. T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[CrossRef]

Y. Zhou, Y. Huang, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87(23), 231107 (2005).
[CrossRef]

Ishikawa, K.

K. C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43(2), 631–636 (2004).
[CrossRef]

F. Araoka, K. C. Shin, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94(1), 279–283 (2003).
[CrossRef]

Kelly, S. M.

K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, and S. M. Kelly, “Stokes parameter studies of spontaneous emission from chiral nematic liquid crystals as a one-dimensional photonic stopband crystal: experiment and theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041706 (2005).
[CrossRef] [PubMed]

Kim, S. T.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14(10), 746–749 (2002).
[CrossRef]

Kopp, V. I.

Marino, A.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2005).
[CrossRef]

Matsuhisa, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[CrossRef]

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, Y. Takao, A. Fujii, M. Ozaki, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation,” Opt. Express 15(2), 616–622 (2007).
[CrossRef] [PubMed]

Matsui, T.

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741–3743 (2002).
[CrossRef]

Mohajerani, E.

Morris, S. M.

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. SID 14, 565–573 (2006).

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

O’Neill, M.

K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, and S. M. Kelly, “Stokes parameter studies of spontaneous emission from chiral nematic liquid crystals as a one-dimensional photonic stopband crystal: experiment and theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041706 (2005).
[CrossRef] [PubMed]

Ozaki, M.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[CrossRef]

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, Y. Takao, A. Fujii, M. Ozaki, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation,” Opt. Express 15(2), 616–622 (2007).
[CrossRef] [PubMed]

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, Y. Takao, A. Fujii, M. Ozaki, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation,” Opt. Express 15(2), 616–622 (2007).
[CrossRef] [PubMed]

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741–3743 (2002).
[CrossRef]

Ozaki, R.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[CrossRef]

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741–3743 (2002).
[CrossRef]

Palffy-Muhoray, P.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2005).
[CrossRef]

Park, B.

K. C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43(2), 631–636 (2004).
[CrossRef]

Pivnenko, M. N.

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. SID 14, 565–573 (2006).

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

Richards, G. J.

K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, and S. M. Kelly, “Stokes parameter studies of spontaneous emission from chiral nematic liquid crystals as a one-dimensional photonic stopband crystal: experiment and theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041706 (2005).
[CrossRef] [PubMed]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

Schmidtke, J.

J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31(2), 179–194 (2003).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14(10), 746–749 (2002).
[CrossRef]

Shin, K. C.

K. C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43(2), 631–636 (2004).
[CrossRef]

F. Araoka, K. C. Shin, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94(1), 279–283 (2003).
[CrossRef]

Shirvani-Mahdavi, H.

Stille, W.

J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31(2), 179–194 (2003).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14(10), 746–749 (2002).
[CrossRef]

Swager, T. M.

K. C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43(2), 631–636 (2004).
[CrossRef]

F. Araoka, K. C. Shin, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94(1), 279–283 (2003).
[CrossRef]

Taheri, B.

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2005).
[CrossRef]

Takanishi, Y.

K. C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43(2), 631–636 (2004).
[CrossRef]

F. Araoka, K. C. Shin, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94(1), 279–283 (2003).
[CrossRef]

Takao, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[CrossRef]

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, Y. Takao, A. Fujii, M. Ozaki, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation,” Opt. Express 15(2), 616–622 (2007).
[CrossRef] [PubMed]

Takezoe, H.

K. C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43(2), 631–636 (2004).
[CrossRef]

F. Araoka, K. C. Shin, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94(1), 279–283 (2003).
[CrossRef]

Vithana, H. K. M.

Woon, K. L.

K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, and S. M. Kelly, “Stokes parameter studies of spontaneous emission from chiral nematic liquid crystals as a one-dimensional photonic stopband crystal: experiment and theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041706 (2005).
[CrossRef] [PubMed]

Wu, S. T.

H. Shirvani-Mahdavi, E. Mohajerani, and S. T. Wu, “Circularly polarized high-efficiency cholesteric liquid crystal lasers with a tunable nematic phase retarder,” Opt. Express 18(5), 5021–5027 (2010).
[CrossRef] [PubMed]

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, Y. Takao, A. Fujii, M. Ozaki, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation,” Opt. Express 15(2), 616–622 (2007).
[CrossRef] [PubMed]

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[CrossRef]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14(9), 3906–3916 (2006).
[CrossRef] [PubMed]

Y. Zhou, Y. Huang, Z. Ge, L. P. Chen, Q. Hong, T. X. Wu, and S. T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[CrossRef]

Y. Zhou, Y. Huang, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87(23), 231107 (2005).
[CrossRef]

Wu, T. X.

Y. Zhou, Y. Huang, Z. Ge, L. P. Chen, Q. Hong, T. X. Wu, and S. T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[CrossRef]

Yoshino, K.

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741–3743 (2002).
[CrossRef]

Zhou, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[CrossRef]

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, Y. Takao, A. Fujii, M. Ozaki, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation,” Opt. Express 15(2), 616–622 (2007).
[CrossRef] [PubMed]

Y. Zhou, Y. Huang, Z. Ge, L. P. Chen, Q. Hong, T. X. Wu, and S. T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[CrossRef]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14(9), 3906–3916 (2006).
[CrossRef] [PubMed]

Y. Zhou, Y. Huang, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87(23), 231107 (2005).
[CrossRef]

Zhu, Z.

K. C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43(2), 631–636 (2004).
[CrossRef]

F. Araoka, K. C. Shin, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94(1), 279–283 (2003).
[CrossRef]

Adv. Mater.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14(10), 746–749 (2002).
[CrossRef]

Appl. Phys. Lett.

Y. Zhou, Y. Huang, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87(23), 231107 (2005).
[CrossRef]

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[CrossRef]

T. Matsui, R. Ozaki, K. Funamoto, M. Ozaki, and K. Yoshino, “Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal,” Appl. Phys. Lett. 81(20), 3741–3743 (2002).
[CrossRef]

Eur. Phys. J. B

J. Schmidtke and W. Stille, “Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment,” Eur. Phys. J. B 31(2), 179–194 (2003).
[CrossRef]

J. Appl. Phys.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994).
[CrossRef]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97(2), 023103 (2005).
[CrossRef]

F. Araoka, K. C. Shin, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94(1), 279–283 (2003).
[CrossRef]

J. SID

S. M. Morris, A. D. Ford, C. Gillespie, M. N. Pivnenko, O. Hadeler, and H. J. Coles, “The emission characteristics of liquid-crystal lasers,” J. SID 14, 565–573 (2006).

Jpn. J. Appl. Phys.

K. C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43(2), 631–636 (2004).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

W. Cao, P. Palffy-Muhoray, B. Taheri, A. Marino, and G. Abbate, “Lasing thresholds of cholesteric liquid crystals lasers,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 429(1), 101–110 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

K. L. Woon, M. O’Neill, G. J. Richards, M. P. Aldred, and S. M. Kelly, “Stokes parameter studies of spontaneous emission from chiral nematic liquid crystals as a one-dimensional photonic stopband crystal: experiment and theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(4), 041706 (2005).
[CrossRef] [PubMed]

Y. Zhou, Y. Huang, Z. Ge, L. P. Chen, Q. Hong, T. X. Wu, and S. T. Wu, “Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(6), 061705 (2006).
[CrossRef]

Other

P. W. Milonni, and J. H. Eberly, Lasers (John Wiley & Sons, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The laser emission energy of binary-dye doped CLC vs. wavelength (blue line), PM597-CLC at λ = 586 nm (orange line), and DCM-CLC at λ = 607 nm (red line). Pump energy = 25 µJ/pulse for all the measurements.

Fig. 2
Fig. 2

A schematic diagram of the CLC laser including an external stable resonator. C1 and C3: CLC reflectors; L l and L r : plano-convex lenses; C2: the active CLC cell. C1 and C3 are, in practice, fixed on the plane surfaces of L l and L r , respectively.

Fig. 3
Fig. 3

The normalized transmittance of active CLC (brown line) and passive CLC (blue line). The red line shows the lasing spectrum of the active CLC cell at 10 µJ/pulse pump.

Fig. 4
Fig. 4

The laser emission energy dependence on the pump energy of a single CLC laser (pink line) and a CLC laser with an external stable resonator (green line). In this experiment, because the laser output with an external stable resonator is significantly higher than that of the single CLC laser, in order to show this contrast an arbitrary scale which is different from Fig. 1 is used.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S t d = n o I / / n e I n o I / / + n e I ,
0 8 d 2 f 2 8 d f + 3 2 1 ,

Metrics