Abstract

By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D2 line, while pumping laser is scanned across cesium D1 or D2 lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
    [CrossRef]
  2. B. D. Yang, J. Y. Zhao, T. C. Zhang, and J. M. Wang, “Improvement of the spectra signal-to-noise ratio of cesium 6P3/2–8S1/2 transition and its application in laser frequency stabilization,” J. Phys. D Appl. Phys. 42(8), 085111 (2009).
    [CrossRef]
  3. E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49(1), 31–75 (1977).
    [CrossRef]
  4. C. Wieman and T. W. Hansch, “Precision measurement of the 1S Lamb shift and of the 1S-2S isotope shift of hydrogen and deutrium,” Phys. Rev. A 22(1), 192–205 (1980).
    [CrossRef]
  5. S. Chakrabarti, B. Ray, and P. N. Ghost, “Velocity selective optical pumping and repumping effects with counter and copropagating laser radiations for D2 lines of rubidium,” Eur. Phys. J. D 42(3), 359–368 (2007).
    [CrossRef]
  6. U. D. Rapol and V. Natarajan, “Doppler-free spectroscopy in driven three-level systems,” Eur. Phys. J. D 28(3), 317–322 (2004).
    [CrossRef]
  7. Y. H. Wang, H. J. Yang, Z. J. Du, T. C. Zhang, and J. M. Wang, “Autler-Townes doublet in novel sub-Doppler spectra with cesium vapor cell,” Chin. Phys. 15(1), 138–142 (2006).
    [CrossRef]
  8. S. Nakayama, “Theoretical analysis of Rb and Cs D2 lines in Doppler-free spectroscopic techniques with optical pumping,” Jpn. J. Appl. Phys. 24(Part 1, No. 1), 1–7 (1985).
    [CrossRef]
  9. A. Banerjee and V. Natarajan, “Saturated-absorption spectroscopy: eliminating crossover resonances by use of copropagating beams,” Opt. Lett. 28(20), 1912–1914 (2003).
    [CrossRef] [PubMed]
  10. S. J. Park, H. S. Lee, H. Cho, and J. D. Park, “Velocity-selective-optical-pumping spectroscopy of the 87Rb D2 line by using two copropagating laser beams,” J. Korean Phys. Soc. 33, 281–287 (1998).
  11. J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
    [CrossRef] [PubMed]
  12. B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).
    [CrossRef]
  13. J. M. Zhao, X. B. Zhu, L. J. Zhang, Z. G. Feng, C. Y. Li, and S. T. Jia, “High sensitivity spectroscopy of cesium Rydberg atoms using electromagnetically induced transparency,” Opt. Express 17(18), 15821–15826 (2009).
    [CrossRef] [PubMed]
  14. Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51(6), 4959–4962 (1995).
    [CrossRef] [PubMed]
  15. S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
    [CrossRef]
  16. M. Mitsunaga, T. Mukai, K. Watanabe, and T. Mukai, “Dressed-atom spectroscopy of cold Cs atoms,” J. Opt. Soc. Am. B 13(12), 2696–2700 (1996).
    [CrossRef]
  17. R. Chang, W. Fang, Z. He, B. Ke, P. Chen, and C. Tsai, “Doubly dressed states in a ladder-type system with electromagnetically induced transparency,” Phys. Rev. A 76(5), 053420 (2007).
    [CrossRef]
  18. E. de Carlos Lopez and J. M. Lopez Romero, “Laser frequency stabilization using fm optical pumping spectroscopy,” Rev. Mex. Fis. 54, 222–228 (2008).
  19. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions:basic processes and applications (Wiley & New York, 1992), Chap. 6.

2010

B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).
[CrossRef]

2009

B. D. Yang, J. Y. Zhao, T. C. Zhang, and J. M. Wang, “Improvement of the spectra signal-to-noise ratio of cesium 6P3/2–8S1/2 transition and its application in laser frequency stabilization,” J. Phys. D Appl. Phys. 42(8), 085111 (2009).
[CrossRef]

J. M. Zhao, X. B. Zhu, L. J. Zhang, Z. G. Feng, C. Y. Li, and S. T. Jia, “High sensitivity spectroscopy of cesium Rydberg atoms using electromagnetically induced transparency,” Opt. Express 17(18), 15821–15826 (2009).
[CrossRef] [PubMed]

2008

E. de Carlos Lopez and J. M. Lopez Romero, “Laser frequency stabilization using fm optical pumping spectroscopy,” Rev. Mex. Fis. 54, 222–228 (2008).

2007

R. Chang, W. Fang, Z. He, B. Ke, P. Chen, and C. Tsai, “Doubly dressed states in a ladder-type system with electromagnetically induced transparency,” Phys. Rev. A 76(5), 053420 (2007).
[CrossRef]

S. Chakrabarti, B. Ray, and P. N. Ghost, “Velocity selective optical pumping and repumping effects with counter and copropagating laser radiations for D2 lines of rubidium,” Eur. Phys. J. D 42(3), 359–368 (2007).
[CrossRef]

2006

Y. H. Wang, H. J. Yang, Z. J. Du, T. C. Zhang, and J. M. Wang, “Autler-Townes doublet in novel sub-Doppler spectra with cesium vapor cell,” Chin. Phys. 15(1), 138–142 (2006).
[CrossRef]

2004

U. D. Rapol and V. Natarajan, “Doppler-free spectroscopy in driven three-level systems,” Eur. Phys. J. D 28(3), 317–322 (2004).
[CrossRef]

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

2003

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

A. Banerjee and V. Natarajan, “Saturated-absorption spectroscopy: eliminating crossover resonances by use of copropagating beams,” Opt. Lett. 28(20), 1912–1914 (2003).
[CrossRef] [PubMed]

1998

S. J. Park, H. S. Lee, H. Cho, and J. D. Park, “Velocity-selective-optical-pumping spectroscopy of the 87Rb D2 line by using two copropagating laser beams,” J. Korean Phys. Soc. 33, 281–287 (1998).

1996

1995

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[CrossRef] [PubMed]

Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51(6), 4959–4962 (1995).
[CrossRef] [PubMed]

1985

S. Nakayama, “Theoretical analysis of Rb and Cs D2 lines in Doppler-free spectroscopic techniques with optical pumping,” Jpn. J. Appl. Phys. 24(Part 1, No. 1), 1–7 (1985).
[CrossRef]

1980

C. Wieman and T. W. Hansch, “Precision measurement of the 1S Lamb shift and of the 1S-2S isotope shift of hydrogen and deutrium,” Phys. Rev. A 22(1), 192–205 (1980).
[CrossRef]

1977

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49(1), 31–75 (1977).
[CrossRef]

Arimondo, E.

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49(1), 31–75 (1977).
[CrossRef]

Banerjee, A.

Chakrabarti, S.

S. Chakrabarti, B. Ray, and P. N. Ghost, “Velocity selective optical pumping and repumping effects with counter and copropagating laser radiations for D2 lines of rubidium,” Eur. Phys. J. D 42(3), 359–368 (2007).
[CrossRef]

Chang, R.

R. Chang, W. Fang, Z. He, B. Ke, P. Chen, and C. Tsai, “Doubly dressed states in a ladder-type system with electromagnetically induced transparency,” Phys. Rev. A 76(5), 053420 (2007).
[CrossRef]

Chen, P.

R. Chang, W. Fang, Z. He, B. Ke, P. Chen, and C. Tsai, “Doubly dressed states in a ladder-type system with electromagnetically induced transparency,” Phys. Rev. A 76(5), 053420 (2007).
[CrossRef]

Cho, H.

S. J. Park, H. S. Lee, H. Cho, and J. D. Park, “Velocity-selective-optical-pumping spectroscopy of the 87Rb D2 line by using two copropagating laser beams,” J. Korean Phys. Soc. 33, 281–287 (1998).

de Carlos Lopez, E.

E. de Carlos Lopez and J. M. Lopez Romero, “Laser frequency stabilization using fm optical pumping spectroscopy,” Rev. Mex. Fis. 54, 222–228 (2008).

Du, Z. J.

Y. H. Wang, H. J. Yang, Z. J. Du, T. C. Zhang, and J. M. Wang, “Autler-Townes doublet in novel sub-Doppler spectra with cesium vapor cell,” Chin. Phys. 15(1), 138–142 (2006).
[CrossRef]

Fang, W.

R. Chang, W. Fang, Z. He, B. Ke, P. Chen, and C. Tsai, “Doubly dressed states in a ladder-type system with electromagnetically induced transparency,” Phys. Rev. A 76(5), 053420 (2007).
[CrossRef]

Feng, Z. G.

Gea-Banacloche, J.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[CrossRef] [PubMed]

Ghost, P. N.

S. Chakrabarti, B. Ray, and P. N. Ghost, “Velocity selective optical pumping and repumping effects with counter and copropagating laser radiations for D2 lines of rubidium,” Eur. Phys. J. D 42(3), 359–368 (2007).
[CrossRef]

Hansch, T. W.

C. Wieman and T. W. Hansch, “Precision measurement of the 1S Lamb shift and of the 1S-2S isotope shift of hydrogen and deutrium,” Phys. Rev. A 22(1), 192–205 (1980).
[CrossRef]

He, J.

B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).
[CrossRef]

He, Z.

R. Chang, W. Fang, Z. He, B. Ke, P. Chen, and C. Tsai, “Doubly dressed states in a ladder-type system with electromagnetically induced transparency,” Phys. Rev. A 76(5), 053420 (2007).
[CrossRef]

Inguscio, M.

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49(1), 31–75 (1977).
[CrossRef]

Jia, S. T.

Jin, S.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[CrossRef] [PubMed]

Kash, M. M.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

Ke, B.

R. Chang, W. Fang, Z. He, B. Ke, P. Chen, and C. Tsai, “Doubly dressed states in a ladder-type system with electromagnetically induced transparency,” Phys. Rev. A 76(5), 053420 (2007).
[CrossRef]

Kim, J. B.

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

Lee, H. S.

S. J. Park, H. S. Lee, H. Cho, and J. D. Park, “Velocity-selective-optical-pumping spectroscopy of the 87Rb D2 line by using two copropagating laser beams,” J. Korean Phys. Soc. 33, 281–287 (1998).

Lee, L.

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

Lee, W. K.

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

Li, C. Y.

Li, Y.

Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51(6), 4959–4962 (1995).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[CrossRef] [PubMed]

Liang, Q. B.

B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).
[CrossRef]

Lopez Romero, J. M.

E. de Carlos Lopez and J. M. Lopez Romero, “Laser frequency stabilization using fm optical pumping spectroscopy,” Rev. Mex. Fis. 54, 222–228 (2008).

Lukin, M. D.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

Mitsunaga, M.

Moon, H. S.

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

Mukai, T.

Nakayama, S.

S. Nakayama, “Theoretical analysis of Rb and Cs D2 lines in Doppler-free spectroscopic techniques with optical pumping,” Jpn. J. Appl. Phys. 24(Part 1, No. 1), 1–7 (1985).
[CrossRef]

Natarajan, V.

Park, J. D.

S. J. Park, H. S. Lee, H. Cho, and J. D. Park, “Velocity-selective-optical-pumping spectroscopy of the 87Rb D2 line by using two copropagating laser beams,” J. Korean Phys. Soc. 33, 281–287 (1998).

Park, S. J.

S. J. Park, H. S. Lee, H. Cho, and J. D. Park, “Velocity-selective-optical-pumping spectroscopy of the 87Rb D2 line by using two copropagating laser beams,” J. Korean Phys. Soc. 33, 281–287 (1998).

Rapol, U. D.

U. D. Rapol and V. Natarajan, “Doppler-free spectroscopy in driven three-level systems,” Eur. Phys. J. D 28(3), 317–322 (2004).
[CrossRef]

Ray, B.

S. Chakrabarti, B. Ray, and P. N. Ghost, “Velocity selective optical pumping and repumping effects with counter and copropagating laser radiations for D2 lines of rubidium,” Eur. Phys. J. D 42(3), 359–368 (2007).
[CrossRef]

Sautenkov, V. A.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

Tsai, C.

R. Chang, W. Fang, Z. He, B. Ke, P. Chen, and C. Tsai, “Doubly dressed states in a ladder-type system with electromagnetically induced transparency,” Phys. Rev. A 76(5), 053420 (2007).
[CrossRef]

Violino, P.

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49(1), 31–75 (1977).
[CrossRef]

Wang, J. M.

B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).
[CrossRef]

B. D. Yang, J. Y. Zhao, T. C. Zhang, and J. M. Wang, “Improvement of the spectra signal-to-noise ratio of cesium 6P3/2–8S1/2 transition and its application in laser frequency stabilization,” J. Phys. D Appl. Phys. 42(8), 085111 (2009).
[CrossRef]

Y. H. Wang, H. J. Yang, Z. J. Du, T. C. Zhang, and J. M. Wang, “Autler-Townes doublet in novel sub-Doppler spectra with cesium vapor cell,” Chin. Phys. 15(1), 138–142 (2006).
[CrossRef]

Wang, Y. H.

Y. H. Wang, H. J. Yang, Z. J. Du, T. C. Zhang, and J. M. Wang, “Autler-Townes doublet in novel sub-Doppler spectra with cesium vapor cell,” Chin. Phys. 15(1), 138–142 (2006).
[CrossRef]

Watanabe, K.

Welch, G. R.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

Wieman, C.

C. Wieman and T. W. Hansch, “Precision measurement of the 1S Lamb shift and of the 1S-2S isotope shift of hydrogen and deutrium,” Phys. Rev. A 22(1), 192–205 (1980).
[CrossRef]

Xiao, M.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[CrossRef] [PubMed]

Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51(6), 4959–4962 (1995).
[CrossRef] [PubMed]

Yang, B. D.

B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).
[CrossRef]

B. D. Yang, J. Y. Zhao, T. C. Zhang, and J. M. Wang, “Improvement of the spectra signal-to-noise ratio of cesium 6P3/2–8S1/2 transition and its application in laser frequency stabilization,” J. Phys. D Appl. Phys. 42(8), 085111 (2009).
[CrossRef]

Yang, H. J.

Y. H. Wang, H. J. Yang, Z. J. Du, T. C. Zhang, and J. M. Wang, “Autler-Townes doublet in novel sub-Doppler spectra with cesium vapor cell,” Chin. Phys. 15(1), 138–142 (2006).
[CrossRef]

Yelin, S. F.

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

Zhang, L. J.

Zhang, T. C.

B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).
[CrossRef]

B. D. Yang, J. Y. Zhao, T. C. Zhang, and J. M. Wang, “Improvement of the spectra signal-to-noise ratio of cesium 6P3/2–8S1/2 transition and its application in laser frequency stabilization,” J. Phys. D Appl. Phys. 42(8), 085111 (2009).
[CrossRef]

Y. H. Wang, H. J. Yang, Z. J. Du, T. C. Zhang, and J. M. Wang, “Autler-Townes doublet in novel sub-Doppler spectra with cesium vapor cell,” Chin. Phys. 15(1), 138–142 (2006).
[CrossRef]

Zhao, J. M.

Zhao, J. Y.

B. D. Yang, J. Y. Zhao, T. C. Zhang, and J. M. Wang, “Improvement of the spectra signal-to-noise ratio of cesium 6P3/2–8S1/2 transition and its application in laser frequency stabilization,” J. Phys. D Appl. Phys. 42(8), 085111 (2009).
[CrossRef]

Zhu, X. B.

Appl. Phys. Lett.

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85(18), 3965–3967 (2004).
[CrossRef]

Chin. Phys.

Y. H. Wang, H. J. Yang, Z. J. Du, T. C. Zhang, and J. M. Wang, “Autler-Townes doublet in novel sub-Doppler spectra with cesium vapor cell,” Chin. Phys. 15(1), 138–142 (2006).
[CrossRef]

Eur. Phys. J. D

S. Chakrabarti, B. Ray, and P. N. Ghost, “Velocity selective optical pumping and repumping effects with counter and copropagating laser radiations for D2 lines of rubidium,” Eur. Phys. J. D 42(3), 359–368 (2007).
[CrossRef]

U. D. Rapol and V. Natarajan, “Doppler-free spectroscopy in driven three-level systems,” Eur. Phys. J. D 28(3), 317–322 (2004).
[CrossRef]

J. Korean Phys. Soc.

S. J. Park, H. S. Lee, H. Cho, and J. D. Park, “Velocity-selective-optical-pumping spectroscopy of the 87Rb D2 line by using two copropagating laser beams,” J. Korean Phys. Soc. 33, 281–287 (1998).

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

B. D. Yang, J. Y. Zhao, T. C. Zhang, and J. M. Wang, “Improvement of the spectra signal-to-noise ratio of cesium 6P3/2–8S1/2 transition and its application in laser frequency stabilization,” J. Phys. D Appl. Phys. 42(8), 085111 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

S. Nakayama, “Theoretical analysis of Rb and Cs D2 lines in Doppler-free spectroscopic techniques with optical pumping,” Jpn. J. Appl. Phys. 24(Part 1, No. 1), 1–7 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51(1), 576–584 (1995).
[CrossRef] [PubMed]

B. D. Yang, Q. B. Liang, J. He, T. C. Zhang, and J. M. Wang, “Narrow-linewidth double-resonance optical pumping spectrum due to electromagnetically induced transparency in ladder-type inhomogeneously broadened media,” Phys. Rev. A 81(4), 043803 (2010).
[CrossRef]

Y. Li and M. Xiao, “Observation of quantum interference between dressed states in an electromagnetically induced transparency,” Phys. Rev. A 51(6), 4959–4962 (1995).
[CrossRef] [PubMed]

S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Welch, and M. D. Lukin, “Nonlinear optics via double dark resonances,” Phys. Rev. A 68(6), 063801 (2003).
[CrossRef]

R. Chang, W. Fang, Z. He, B. Ke, P. Chen, and C. Tsai, “Doubly dressed states in a ladder-type system with electromagnetically induced transparency,” Phys. Rev. A 76(5), 053420 (2007).
[CrossRef]

C. Wieman and T. W. Hansch, “Precision measurement of the 1S Lamb shift and of the 1S-2S isotope shift of hydrogen and deutrium,” Phys. Rev. A 22(1), 192–205 (1980).
[CrossRef]

Rev. Mex. Fis.

E. de Carlos Lopez and J. M. Lopez Romero, “Laser frequency stabilization using fm optical pumping spectroscopy,” Rev. Mex. Fis. 54, 222–228 (2008).

Rev. Mod. Phys.

E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49(1), 31–75 (1977).
[CrossRef]

Other

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions:basic processes and applications (Wiley & New York, 1992), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Relevant hyperfine levels of cesium bare states. (b) Uncoupled states. (c) Dressed states. Coupling laser (C) is locked to |1> - |2> cycling transition with frequency detuning of Δc ~0 and Rabi frequency of Ωc by utilizing modulation-free polarization spectroscopic technique. Pumping laser P1 is scanned across transitions F = 4 – F’ = 3, 4 (or F = 3 – F’ = 3, 4) in D1 line. Pumping laser P2 is scanned across F = 4 – F” = 3, 4 transitions in D2 line.

Fig. 2
Fig. 2

Schematic diagram of experiment setup. The solid lines are for the optical path, and the dot line for the electronic connection. The key to figure: ECDL: external-cavity diode laser; OI: optical isolator; SAS: saturated-absorption-spectroscopy device; PS: polarization- spectroscopy device; BS: beam-splitting plate; PBS: wide-band polarization-beam-splitting cube; λ/2: half-wave plate; AP: aperture; NDF: neutral density filter; PD: photodiode; BD: laser beam dump; s: s polarization; p: p polarization.

Fig. 3
Fig. 3

Trace (b) shows SROP spectra corresponding to F = 4 –F’ = 3, 4 (and F = 3 –F’ = 3, 4) transitions in cesium D1 line. The two peaks on left hand present enhanced transmission while the other two peaks on right hand for enhanced absorption. Insets give two different pictures for single-resonance optical pumping, in which the black spots indicate the atomic population. The relevant SAS shown in trace (a) is for frequency calibration.

Fig. 4
Fig. 4

(a) Trace (2) and (3) show the SROP spectra corresponding to cesium F = 4 –F’ = 3, 4 transitions in D1 line with different Ωc while the trace (1) shows the relevant SAS for frequency calibration. The pumping beam’s power is ~9.3μW@894.6nm (Ωp ~0.3 Γ31, Γ31 = 2πx4.56 MHz is the spontaneous decay rate of cesium D1 line) for both of trace (2) and (3). The coupling beam’s power is ~74μW@852.3nm (Ωc ~Γ21) for trace (2) while ~3mW@852.3nm (Ωc ~6.3 Γ21) for trace (3). The up-down shift of traces (2) and (3) does not mean that transmission baseline changes and just for convenient comparison. (b) The splitting of dressed ground state 6S1/2 F = 4 is function of the coupling beam’s power (Δc ~0). The hollow squares are experimental data with ± 2.5 % error bar. The solid line represents for theoretical curve.

Fig. 5
Fig. 5

The offset between the center of the dressed splitting in SROP and the Lamb dip in SAS change linearly along with Δc. Solid rectangles are the experimental data. Inserts are the experimental pictures of SROP and SAS obtained in different Δc at given Ωc.

Fig. 6
Fig. 6

(a) Dressed state splitting around a fixed value Ωc nearly unchanged in different Δc. Solid circles with ± 2.5 % error bar are experimental data. About 8.7% difference between them (4.7MHz) at the range of ~140MHz maybe caused mainly by the error of the power and the frequency drift of the coupling laser. (b) Dressed state splitting of the ground state 6S1/2 F = 4 is function of the coupling beam’s power (Δc = −16 MHz). The solid triangles are experimental data with ± 2.5% error bar. The solid line represents for theoretical curve according to Ω = Γ 21 I / 2 I S .

Fig. 7
Fig. 7

(a) Trace (2) and (3) show the SROP spectra corresponding to cesium F = 4 – F” = 3, 4 transitions in D2 line with different Ωc while the trace (1) shows the relevant SAS for frequency calibration. The pumping beam’s power is ~10μW@852.3nm (Ωp ~0.4 Γ21) for trace (2) and (3). The coupling beam’s power is ~74μW@852.3nm (Ωc ~Γ21) for trace (2) while ~4.3mW @852.3nm (Ωc ~7.5 Γ21) for trace (3). The up-down shift of traces (2) and (3) does not mean that transmission baseline changes and just for convenient comparison. (b) The splitting of dressed ground state 6S1/2 F = 4 is function of the coupling beam’s power (Δc ~0). The circles are experimental data with ± 2.5% of error bar. The solid line represents for theoretical curve.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

| 1 ( N 1 ) = sin θ | 6 S 1 / 2 F = 4 , N + cos θ | 6 P 3 / 2 F = 5 , N 1
| 2 ( N 1 ) = cos θ | 6 S 1 / 2 F = 4 , N sin θ | 6 P 3 / 2 F = 5 , N 1

Metrics