Abstract

We propose a novel scheme employing complementary data inputs to overcome the patterning normally associated with semiconductor optical amplifier based gates and demonstrate the scheme experimentally at 42.6Gb/s. The scheme not only avoids introducing patterning during switching, but also compensates for much of the patterning present on the input data. A novel gate was developed for the experiment to provide the complementary signals required for the scheme.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ueno, S. Nakamura, and K. Tajima, “Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40–160-GHz range for use in ultrahigh-speed all-optical signal processing,” J. Opt. Soc. Am. B 19(11), 2573–2589 (2002).
    [CrossRef]
  2. Y. Liu, E. Tangdiongga, Z. Li, G. D. Shaoxian Zhang, G. D. Huug de Waardt, Khoe, and H. J. S. Dorren, “Error-Free All-Optical Wavelength Conversion at 160 Gb/s Using a Semiconductor Optical Amplifier and an Optical Bandpass Filter,” J. Lightwave Technol. 24(1), 230–236 (2006).
    [CrossRef]
  3. R. J. Manning, X. Yang, R. P. Webb, R. Giller, F. C. Garcia Gunning, and A. D. Ellis, " The "Turbo-Switch": A Novel Technique to Increase the High-Speed Response of SOAs for Wavelength Conversion," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OWS8.
  4. R. P. Webb, and R. J. Manning, “Compensation for Patterning in SOA-Based Switches,” Photonics in Switching, WeI3–6, Pisa, Italy, 2009.
  5. S. Bischoff, M. L. Nielsen, and J. Mørk, “Improving the All-Optical Response of SOAs Using a Modulated Holding Signal,” J. Lightwave Technol. 22(5), 1303–1308 (2004).
    [CrossRef]
  6. I. Kang, M. Rasras, L. Buhl, M. Dinu, S. Cabot, M. Cappuzzo, L. T. Gomez, Y. F. Chen, S. S. Patel, N. Dutta, A. Piccirilli, J. Jaques, and C. R. Giles, “All-optical XOR and XNOR operations at86.4 Gb/s using a pair of semiconductor optical amplifier Mach-Zehnder interferometers,” Opt. Express 17(21), 19062–19066 (2009).
    [CrossRef]
  7. G. Contestabile, M. Presi, R. Proietti, and E. Ciaramella, “Optical Reshaping of 40-Gb/s NRZ and RZ Signals Without Wavelength Conversion,” IEEE Photon. Technol. Lett. 20(13), 1133–1135 (2008).
    [CrossRef]
  8. G. Talli and M. J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39(10), 1305–1313 (2003).
    [CrossRef]
  9. G. D. Maxwell, “Hybrid Integration Technology for High Functional Devices for Future Optical Communications,” Conference on Optical Fibre Communications (OFC), OWI3, San Diego, CA, USA, 2008.
  10. J. M. Dailey and T. L. Koch, “Simple Rules for Optimizing Asymmetries in SOA-Based Mach–Zehnder Wavelength Converters,” J. Lightwave Technol. 27(11), 1480–1488 (2009).
    [CrossRef]

2009

2008

G. Contestabile, M. Presi, R. Proietti, and E. Ciaramella, “Optical Reshaping of 40-Gb/s NRZ and RZ Signals Without Wavelength Conversion,” IEEE Photon. Technol. Lett. 20(13), 1133–1135 (2008).
[CrossRef]

2006

2004

2003

G. Talli and M. J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39(10), 1305–1313 (2003).
[CrossRef]

2002

Adams, M. J.

G. Talli and M. J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39(10), 1305–1313 (2003).
[CrossRef]

Bischoff, S.

Buhl, L.

Cabot, S.

Cappuzzo, M.

Chen, Y. F.

Ciaramella, E.

G. Contestabile, M. Presi, R. Proietti, and E. Ciaramella, “Optical Reshaping of 40-Gb/s NRZ and RZ Signals Without Wavelength Conversion,” IEEE Photon. Technol. Lett. 20(13), 1133–1135 (2008).
[CrossRef]

Contestabile, G.

G. Contestabile, M. Presi, R. Proietti, and E. Ciaramella, “Optical Reshaping of 40-Gb/s NRZ and RZ Signals Without Wavelength Conversion,” IEEE Photon. Technol. Lett. 20(13), 1133–1135 (2008).
[CrossRef]

Dailey, J. M.

Dinu, M.

Dorren, H. J. S.

Dutta, N.

Giles, C. R.

Gomez, L. T.

Huug de Waardt, G. D.

Jaques, J.

Kang, I.

Khoe,

Koch, T. L.

Li, Z.

Liu, Y.

Mørk, J.

Nakamura, S.

Nielsen, M. L.

Patel, S. S.

Piccirilli, A.

Presi, M.

G. Contestabile, M. Presi, R. Proietti, and E. Ciaramella, “Optical Reshaping of 40-Gb/s NRZ and RZ Signals Without Wavelength Conversion,” IEEE Photon. Technol. Lett. 20(13), 1133–1135 (2008).
[CrossRef]

Proietti, R.

G. Contestabile, M. Presi, R. Proietti, and E. Ciaramella, “Optical Reshaping of 40-Gb/s NRZ and RZ Signals Without Wavelength Conversion,” IEEE Photon. Technol. Lett. 20(13), 1133–1135 (2008).
[CrossRef]

Rasras, M.

Shaoxian Zhang, G. D.

Tajima, K.

Talli, G.

G. Talli and M. J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39(10), 1305–1313 (2003).
[CrossRef]

Tangdiongga, E.

Ueno, Y.

IEEE J. Quantum Electron.

G. Talli and M. J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39(10), 1305–1313 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Contestabile, M. Presi, R. Proietti, and E. Ciaramella, “Optical Reshaping of 40-Gb/s NRZ and RZ Signals Without Wavelength Conversion,” IEEE Photon. Technol. Lett. 20(13), 1133–1135 (2008).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Other

G. D. Maxwell, “Hybrid Integration Technology for High Functional Devices for Future Optical Communications,” Conference on Optical Fibre Communications (OFC), OWI3, San Diego, CA, USA, 2008.

R. J. Manning, X. Yang, R. P. Webb, R. Giller, F. C. Garcia Gunning, and A. D. Ellis, " The "Turbo-Switch": A Novel Technique to Increase the High-Speed Response of SOAs for Wavelength Conversion," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OWS8.

R. P. Webb, and R. J. Manning, “Compensation for Patterning in SOA-Based Switches,” Photonics in Switching, WeI3–6, Pisa, Italy, 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Pattern compensation scheme applied to an SOA-MZI gate.

Fig. 2
Fig. 2

Inputs received by SOA 1 and SOA 2.

Fig. 3
Fig. 3

SOA-MZI gate with independently optimised outputs.

Fig. 4
Fig. 4

Simulation of a conventional SOA-MZI gate showing patterned SOA responses and output.

Fig. 5
Fig. 5

Simulation of an SOA-MZI gate with pattern compensation. (Data complement shown in red with data inputs.)

Fig. 6
Fig. 6

Experimental system.

Fig. 7
Fig. 7

Waveforms (optical sampling oscilloscope) and eye diagrams (electronic oscilloscope) with no compensation and with an RZ compensation signal.

Fig. 8
Fig. 8

Waveforms (optical sampling oscilloscope) and eye diagrams (electronic oscilloscope) with no compensation and with a return-to-on compensation signal.

Tables (2)

Tables Icon

Table 1 Signal powers and wavelengths for RZ compensation signal experiment.

Tables Icon

Table 2 Signal powers and wavelengths for return-to-on compensation signal experiment.

Metrics