Abstract

A rotating random-phase-screen diffuser is sometimes employed on synchrotron x-ray imaging beamlines to ameliorate field-of-view inhomogeneities due to electron-beam instabilities and beamline optics phase artifacts. The ideal result is a broader, more uniformly illuminated beam intensity for cleaner coherent x-ray images. The spinning diffuser may be modeled as an ensemble of transversely random thin phase screens, with the resulting set of intensity maps over the detector plane being incoherently averaged over the ensemble. Whilst the coherence width associated with the source is unaffected by the diffuser, the magnitude of the complex degree of second-order coherence may be significantly reduced [K. S. Morgan, S. C. Irvine, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu, Opt. Commun. 283, 216 (2010)]. Through use of a computational model and experimental data obtained on x-ray beamline BL20XU at SPring-8, Japan, we investigate the effects of such a diffuser on the quality of Fresnel diffraction fringes in propagation-based x-ray phase contrast imaging. We show that careful choice of diffuser characteristics such as thickness and fiber size, together with appropriate placement of the diffuser, can result in the ideal scenario of negligible reduction in fringe contrast whilst the desired diffusing properties are retained.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Morgan, S. C. Irvine, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu, “Measurement of hard x-ray coherence in the presence of a rotating random-phase-screen diffuser,” Opt. Commun. 283(2), 216–225 (2010).
    [CrossRef]
  2. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
    [CrossRef]
  3. P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996).
    [CrossRef]
  4. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
    [CrossRef]
  5. T. E. Gureyev, S. C. Mayo, D. E. Myers, Y. Nesterets, D. M. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “Refracting Röntgen's rays: Propagation-based x-ray phase contrast for biomedical imaging,” J. Appl. Phys. 105(10), 102005–102012 (2009).
    [CrossRef]
  6. S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
    [CrossRef]
  7. S. C. Irvine, D. M. Paganin, A. Jamison, S. Dubsky, and A. Fouras, “Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle,” Opt. Express 18, 2368-2379 (2010).
    [CrossRef] [PubMed]
  8. J. M. Cowley, Diffraction physics (third edition) (Amsterdam: North-Holland Publication, and New York: Elsevier Publication Co., 1995).
  9. D. L. White, O. R. Wood, J. E. Bjorkholm, S. Spector, A. A. MacDowell, and B. LaFontaine, “Modification of the coherence of undulator radiation,” Rev. Sci. Instrum. 66(2), 1930 (1995).
    [CrossRef]
  10. R. A. Lewis, “Medical phase contrast x-ray imaging: current status and future prospects,” Phys. Med. Biol. 49(16), 3573–3583 (2004).
    [CrossRef] [PubMed]
  11. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, New York, 2007).
  12. L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ Pr, Cambridge, 1995).
  13. A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68(7), 2774–2782 (1997).
    [CrossRef]
  14. Ya. I. Nesterets, “On the origins of decoherence and extinction contrast in phase-contrast imaging,” Opt. Commun. 281(4), 533–542 (2008).
    [CrossRef]
  15. K. A. Nugent, C. Q. Tran, and A. Roberts, “Coherence transport through imperfect x-ray optical systems,” Opt. Express 11(19), 2323–2328 (2003).
    [CrossRef] [PubMed]
  16. T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231(1-6), 53–70 (2004).
    [CrossRef]
  17. K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
    [CrossRef] [PubMed]
  18. D. M. Paganin, Coherent X-Ray Optics (Oxford University Press, New York, 2006).
  19. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
  20. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, Cambridge Greenwood Village, 2007).
  21. VPAC, “Victorian Partnership for Advanced Computing,” (2010), http://www.vpac.org/ .
  22. A. Barty, “Quantitative Phase-Amplitude Microscopy, PhD Thesis,” (University of Melbourne, Melbourne, 1999).
  23. W. Leitenberger, H. Wendrock, L. Bischoff, and T. Weitkamp, “Pinhole interferometry with coherent hard X-rays,” J. Synchrotron Radiat. 11(2), 190–197 (2004).
    [CrossRef] [PubMed]
  24. A. A. Michelson, Studies in Optics (University of Chicago Press, Chicago, 1927).
  25. M. Born and E. Wolf, Principles of optics (Cambridge University Press, Cambridge, 1999).
  26. P. H. van Cittert, “Die Wahrscheinliche Schwingungsverteilung in Einer von Einer Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene,” Physica 1(1-6), 201–210 (1934).
    [CrossRef]
  27. P. H. van Cittert, “Kohaerenz-probleme,” Physica 6(7-12), 1129–1138 (1939).
    [CrossRef]
  28. F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 5(8), 785–795 (1938).
    [CrossRef]

2010

K. S. Morgan, S. C. Irvine, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu, “Measurement of hard x-ray coherence in the presence of a rotating random-phase-screen diffuser,” Opt. Commun. 283(2), 216–225 (2010).
[CrossRef]

S. C. Irvine, D. M. Paganin, A. Jamison, S. Dubsky, and A. Fouras, “Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle,” Opt. Express 18, 2368-2379 (2010).
[CrossRef] [PubMed]

2009

T. E. Gureyev, S. C. Mayo, D. E. Myers, Y. Nesterets, D. M. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “Refracting Röntgen's rays: Propagation-based x-ray phase contrast for biomedical imaging,” J. Appl. Phys. 105(10), 102005–102012 (2009).
[CrossRef]

2008

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[CrossRef]

Ya. I. Nesterets, “On the origins of decoherence and extinction contrast in phase-contrast imaging,” Opt. Commun. 281(4), 533–542 (2008).
[CrossRef]

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[CrossRef] [PubMed]

2004

W. Leitenberger, H. Wendrock, L. Bischoff, and T. Weitkamp, “Pinhole interferometry with coherent hard X-rays,” J. Synchrotron Radiat. 11(2), 190–197 (2004).
[CrossRef] [PubMed]

R. A. Lewis, “Medical phase contrast x-ray imaging: current status and future prospects,” Phys. Med. Biol. 49(16), 3573–3583 (2004).
[CrossRef] [PubMed]

T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231(1-6), 53–70 (2004).
[CrossRef]

2003

1997

A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68(7), 2774–2782 (1997).
[CrossRef]

1996

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996).
[CrossRef]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[CrossRef]

1995

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[CrossRef]

D. L. White, O. R. Wood, J. E. Bjorkholm, S. Spector, A. A. MacDowell, and B. LaFontaine, “Modification of the coherence of undulator radiation,” Rev. Sci. Instrum. 66(2), 1930 (1995).
[CrossRef]

1939

P. H. van Cittert, “Kohaerenz-probleme,” Physica 6(7-12), 1129–1138 (1939).
[CrossRef]

1938

F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 5(8), 785–795 (1938).
[CrossRef]

1934

P. H. van Cittert, “Die Wahrscheinliche Schwingungsverteilung in Einer von Einer Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene,” Physica 1(1-6), 201–210 (1934).
[CrossRef]

Barrett, R.

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996).
[CrossRef]

Baruchel, J.

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996).
[CrossRef]

Bischoff, L.

W. Leitenberger, H. Wendrock, L. Bischoff, and T. Weitkamp, “Pinhole interferometry with coherent hard X-rays,” J. Synchrotron Radiat. 11(2), 190–197 (2004).
[CrossRef] [PubMed]

Bjorkholm, J. E.

D. L. White, O. R. Wood, J. E. Bjorkholm, S. Spector, A. A. MacDowell, and B. LaFontaine, “Modification of the coherence of undulator radiation,” Rev. Sci. Instrum. 66(2), 1930 (1995).
[CrossRef]

Boucher, R.

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[CrossRef] [PubMed]

Cloetens, P.

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996).
[CrossRef]

Dubsky, S.

S. C. Irvine, D. M. Paganin, A. Jamison, S. Dubsky, and A. Fouras, “Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle,” Opt. Express 18, 2368-2379 (2010).
[CrossRef] [PubMed]

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[CrossRef]

Fouras, A.

S. C. Irvine, D. M. Paganin, A. Jamison, S. Dubsky, and A. Fouras, “Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle,” Opt. Express 18, 2368-2379 (2010).
[CrossRef] [PubMed]

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[CrossRef]

Gao, D.

A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68(7), 2774–2782 (1997).
[CrossRef]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[CrossRef]

Guigay, J. P.

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996).
[CrossRef]

Gureyev, T. E.

T. E. Gureyev, S. C. Mayo, D. E. Myers, Y. Nesterets, D. M. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “Refracting Röntgen's rays: Propagation-based x-ray phase contrast for biomedical imaging,” J. Appl. Phys. 105(10), 102005–102012 (2009).
[CrossRef]

T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231(1-6), 53–70 (2004).
[CrossRef]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[CrossRef]

Irvine, S. C.

K. S. Morgan, S. C. Irvine, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu, “Measurement of hard x-ray coherence in the presence of a rotating random-phase-screen diffuser,” Opt. Commun. 283(2), 216–225 (2010).
[CrossRef]

S. C. Irvine, D. M. Paganin, A. Jamison, S. Dubsky, and A. Fouras, “Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle,” Opt. Express 18, 2368-2379 (2010).
[CrossRef] [PubMed]

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[CrossRef]

Jamison, A.

Kohn, V.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[CrossRef]

Kuznetsov, S.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[CrossRef]

LaFontaine, B.

D. L. White, O. R. Wood, J. E. Bjorkholm, S. Spector, A. A. MacDowell, and B. LaFontaine, “Modification of the coherence of undulator radiation,” Rev. Sci. Instrum. 66(2), 1930 (1995).
[CrossRef]

Leitenberger, W.

W. Leitenberger, H. Wendrock, L. Bischoff, and T. Weitkamp, “Pinhole interferometry with coherent hard X-rays,” J. Synchrotron Radiat. 11(2), 190–197 (2004).
[CrossRef] [PubMed]

Lewis, R. A.

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[CrossRef]

R. A. Lewis, “Medical phase contrast x-ray imaging: current status and future prospects,” Phys. Med. Biol. 49(16), 3573–3583 (2004).
[CrossRef] [PubMed]

MacDowell, A. A.

D. L. White, O. R. Wood, J. E. Bjorkholm, S. Spector, A. A. MacDowell, and B. LaFontaine, “Modification of the coherence of undulator radiation,” Rev. Sci. Instrum. 66(2), 1930 (1995).
[CrossRef]

Mayo, S. C.

T. E. Gureyev, S. C. Mayo, D. E. Myers, Y. Nesterets, D. M. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “Refracting Röntgen's rays: Propagation-based x-ray phase contrast for biomedical imaging,” J. Appl. Phys. 105(10), 102005–102012 (2009).
[CrossRef]

Morgan, K. S.

K. S. Morgan, S. C. Irvine, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu, “Measurement of hard x-ray coherence in the presence of a rotating random-phase-screen diffuser,” Opt. Commun. 283(2), 216–225 (2010).
[CrossRef]

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[CrossRef] [PubMed]

Myers, D. E.

T. E. Gureyev, S. C. Mayo, D. E. Myers, Y. Nesterets, D. M. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “Refracting Röntgen's rays: Propagation-based x-ray phase contrast for biomedical imaging,” J. Appl. Phys. 105(10), 102005–102012 (2009).
[CrossRef]

Nesterets, Y.

T. E. Gureyev, S. C. Mayo, D. E. Myers, Y. Nesterets, D. M. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “Refracting Röntgen's rays: Propagation-based x-ray phase contrast for biomedical imaging,” J. Appl. Phys. 105(10), 102005–102012 (2009).
[CrossRef]

Nesterets, Ya. I.

Ya. I. Nesterets, “On the origins of decoherence and extinction contrast in phase-contrast imaging,” Opt. Commun. 281(4), 533–542 (2008).
[CrossRef]

Nugent, K. A.

Paganin, D. M.

S. C. Irvine, D. M. Paganin, A. Jamison, S. Dubsky, and A. Fouras, “Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle,” Opt. Express 18, 2368-2379 (2010).
[CrossRef] [PubMed]

K. S. Morgan, S. C. Irvine, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu, “Measurement of hard x-ray coherence in the presence of a rotating random-phase-screen diffuser,” Opt. Commun. 283(2), 216–225 (2010).
[CrossRef]

T. E. Gureyev, S. C. Mayo, D. E. Myers, Y. Nesterets, D. M. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “Refracting Röntgen's rays: Propagation-based x-ray phase contrast for biomedical imaging,” J. Appl. Phys. 105(10), 102005–102012 (2009).
[CrossRef]

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[CrossRef]

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[CrossRef] [PubMed]

T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231(1-6), 53–70 (2004).
[CrossRef]

Parsons, D. W.

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[CrossRef] [PubMed]

Pogany, A.

T. E. Gureyev, S. C. Mayo, D. E. Myers, Y. Nesterets, D. M. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “Refracting Röntgen's rays: Propagation-based x-ray phase contrast for biomedical imaging,” J. Appl. Phys. 105(10), 102005–102012 (2009).
[CrossRef]

T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231(1-6), 53–70 (2004).
[CrossRef]

A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68(7), 2774–2782 (1997).
[CrossRef]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[CrossRef]

Roberts, A.

Schelokov, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[CrossRef]

Schlenker, M.

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996).
[CrossRef]

Siu, K. K. W.

K. S. Morgan, S. C. Irvine, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu, “Measurement of hard x-ray coherence in the presence of a rotating random-phase-screen diffuser,” Opt. Commun. 283(2), 216–225 (2010).
[CrossRef]

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[CrossRef] [PubMed]

Snigirev, A.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[CrossRef]

Snigireva, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[CrossRef]

Spector, S.

D. L. White, O. R. Wood, J. E. Bjorkholm, S. Spector, A. A. MacDowell, and B. LaFontaine, “Modification of the coherence of undulator radiation,” Rev. Sci. Instrum. 66(2), 1930 (1995).
[CrossRef]

Stevenson, A. W.

T. E. Gureyev, S. C. Mayo, D. E. Myers, Y. Nesterets, D. M. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “Refracting Röntgen's rays: Propagation-based x-ray phase contrast for biomedical imaging,” J. Appl. Phys. 105(10), 102005–102012 (2009).
[CrossRef]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[CrossRef]

Suzuki, Y.

K. S. Morgan, S. C. Irvine, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu, “Measurement of hard x-ray coherence in the presence of a rotating random-phase-screen diffuser,” Opt. Commun. 283(2), 216–225 (2010).
[CrossRef]

Takeuchi, A.

K. S. Morgan, S. C. Irvine, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu, “Measurement of hard x-ray coherence in the presence of a rotating random-phase-screen diffuser,” Opt. Commun. 283(2), 216–225 (2010).
[CrossRef]

Tran, C. Q.

Uesugi, K.

K. S. Morgan, S. C. Irvine, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu, “Measurement of hard x-ray coherence in the presence of a rotating random-phase-screen diffuser,” Opt. Commun. 283(2), 216–225 (2010).
[CrossRef]

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[CrossRef] [PubMed]

van Cittert, P. H.

P. H. van Cittert, “Kohaerenz-probleme,” Physica 6(7-12), 1129–1138 (1939).
[CrossRef]

P. H. van Cittert, “Die Wahrscheinliche Schwingungsverteilung in Einer von Einer Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene,” Physica 1(1-6), 201–210 (1934).
[CrossRef]

Weitkamp, T.

W. Leitenberger, H. Wendrock, L. Bischoff, and T. Weitkamp, “Pinhole interferometry with coherent hard X-rays,” J. Synchrotron Radiat. 11(2), 190–197 (2004).
[CrossRef] [PubMed]

Wendrock, H.

W. Leitenberger, H. Wendrock, L. Bischoff, and T. Weitkamp, “Pinhole interferometry with coherent hard X-rays,” J. Synchrotron Radiat. 11(2), 190–197 (2004).
[CrossRef] [PubMed]

White, D. L.

D. L. White, O. R. Wood, J. E. Bjorkholm, S. Spector, A. A. MacDowell, and B. LaFontaine, “Modification of the coherence of undulator radiation,” Rev. Sci. Instrum. 66(2), 1930 (1995).
[CrossRef]

Wilkins, S. W.

T. E. Gureyev, S. C. Mayo, D. E. Myers, Y. Nesterets, D. M. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “Refracting Röntgen's rays: Propagation-based x-ray phase contrast for biomedical imaging,” J. Appl. Phys. 105(10), 102005–102012 (2009).
[CrossRef]

T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231(1-6), 53–70 (2004).
[CrossRef]

A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68(7), 2774–2782 (1997).
[CrossRef]

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[CrossRef]

Wood, O. R.

D. L. White, O. R. Wood, J. E. Bjorkholm, S. Spector, A. A. MacDowell, and B. LaFontaine, “Modification of the coherence of undulator radiation,” Rev. Sci. Instrum. 66(2), 1930 (1995).
[CrossRef]

Yagi, N.

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[CrossRef] [PubMed]

Zernike, F.

F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 5(8), 785–795 (1938).
[CrossRef]

Appl. Phys. Lett.

S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008).
[CrossRef]

Eur. J. Radiol.

K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008).
[CrossRef] [PubMed]

J. Appl. Phys.

T. E. Gureyev, S. C. Mayo, D. E. Myers, Y. Nesterets, D. M. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “Refracting Röntgen's rays: Propagation-based x-ray phase contrast for biomedical imaging,” J. Appl. Phys. 105(10), 102005–102012 (2009).
[CrossRef]

J. Phys. D Appl. Phys.

P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996).
[CrossRef]

J. Synchrotron Radiat.

W. Leitenberger, H. Wendrock, L. Bischoff, and T. Weitkamp, “Pinhole interferometry with coherent hard X-rays,” J. Synchrotron Radiat. 11(2), 190–197 (2004).
[CrossRef] [PubMed]

Nature

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996).
[CrossRef]

Opt. Commun.

K. S. Morgan, S. C. Irvine, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu, “Measurement of hard x-ray coherence in the presence of a rotating random-phase-screen diffuser,” Opt. Commun. 283(2), 216–225 (2010).
[CrossRef]

Ya. I. Nesterets, “On the origins of decoherence and extinction contrast in phase-contrast imaging,” Opt. Commun. 281(4), 533–542 (2008).
[CrossRef]

T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231(1-6), 53–70 (2004).
[CrossRef]

Opt. Express

Phys. Med. Biol.

R. A. Lewis, “Medical phase contrast x-ray imaging: current status and future prospects,” Phys. Med. Biol. 49(16), 3573–3583 (2004).
[CrossRef] [PubMed]

Physica

P. H. van Cittert, “Die Wahrscheinliche Schwingungsverteilung in Einer von Einer Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene,” Physica 1(1-6), 201–210 (1934).
[CrossRef]

P. H. van Cittert, “Kohaerenz-probleme,” Physica 6(7-12), 1129–1138 (1939).
[CrossRef]

F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 5(8), 785–795 (1938).
[CrossRef]

Rev. Sci. Instrum.

A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68(7), 2774–2782 (1997).
[CrossRef]

D. L. White, O. R. Wood, J. E. Bjorkholm, S. Spector, A. A. MacDowell, and B. LaFontaine, “Modification of the coherence of undulator radiation,” Rev. Sci. Instrum. 66(2), 1930 (1995).
[CrossRef]

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995).
[CrossRef]

Other

J. M. Cowley, Diffraction physics (third edition) (Amsterdam: North-Holland Publication, and New York: Elsevier Publication Co., 1995).

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, New York, 2007).

L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ Pr, Cambridge, 1995).

D. M. Paganin, Coherent X-Ray Optics (Oxford University Press, New York, 2006).

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, Cambridge Greenwood Village, 2007).

VPAC, “Victorian Partnership for Advanced Computing,” (2010), http://www.vpac.org/ .

A. Barty, “Quantitative Phase-Amplitude Microscopy, PhD Thesis,” (University of Melbourne, Melbourne, 1999).

A. A. Michelson, Studies in Optics (University of Chicago Press, Chicago, 1927).

M. Born and E. Wolf, Principles of optics (Cambridge University Press, Cambridge, 1999).

Supplementary Material (1)

» Media 1: MOV (7898 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Flat field at BL20XU as seen (a) without a diffuser, (b) with a stationary diffuser and (c) with a spinning diffuser. Power spectra ( | F F T { I } | 2 ) are shown inset. (Media 1).

Fig. 2
Fig. 2

Experimental set-up at SPring-8 x-ray synchrotron beamline BL20XU, using 25keV x-rays to produce propagation based phase contrast images (object-to-detector propagation distance between 0.5 and 1.45m). Images recorded on a CCD camera coupled to a phosphor screen and optical lens, producing 0.18μm effective pixel size.

Fig. 3
Fig. 3

The observed effects of a diffuser on the visibility of fringes in the propagation-based phase contrast image of two 1.5mm diameter Perspex spheres at 1.45m object-to-detector propagation distance. In projection, the spheres share an overlap region of up to 30μm, which results in a complex interference pattern. (a) Image in the absence of a diffuser. The field-of-view here is illustrated by the black box in the inset, which shows the projected thickness image of the two spheres. (b) Magnified region of lattice-like interference pattern in Fig. 3a (region denoted by red box), still in the absence of a diffuser. (c) The same region, this time taken with diffuser present. Note the absence of central intersecting fringes in (c), when compared to (b).

Fig. 4
Fig. 4

(a) Optical microscope image of the diffuser paper used. (b) Line profile through one two-dimensional realization of the transversely random phase map used to simulate the diffuser as a thin phase screen, before propagation.

Fig. 5
Fig. 5

Simulated phase contrast images of a 3mm diameter cylinder with 1.45m propagation, using (a) no diffuser, (b) a single diffuser position and (c) the incoherent sum over 1000 diffuser realizations.

Fig. 6
Fig. 6

Simulated phase contrast images of 1.5mm diameter spheres seen experimentally in Fig. 3, modelled without, then with a diffuser. (a) Image in the absence of a diffuser. (b) Magnified region of the lattice-like interference pattern (region denoted by red box) in (a). (c) The same region of a similar image, this time modelled with diffuser present.

Fig. 7
Fig. 7

Observed decrease in visibility of phase contrast fringes seen at the edge of a 3mm cylinder, taken with 1.45m propagation, (a) in simulation and (b) observed.

Fig. 8
Fig. 8

(a) Visibility and (b) Width across which fringes from the edge of a 3mm decreases when a diffuser is introduced, with most effect at long propagation distance, both observed and in simulation.

Fig. 9
Fig. 9

Visibility of phase contrast fringes decreasing with (a) increasing phase depth Δ φ , (b) decreasing characteristic length l. Propagation distance is 1.0 m.

Fig. 10
Fig. 10

Visibility decrease in phase contrast fringes from the edge of a 1mm Perspex cylinder observed experimentally in the presence of a diffuser is more significant for a diffuser placed in the upstream experimental hutch 29m from the aperture secondary source, than at the optics hutch 1.7m from the aperture.

Fig. 11
Fig. 11

The characteristics and position of the diffuser will determine the phase gradient in the field incident at the sample, hence the effect of the diffuser on the visibility of observed phase contrast fringes.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

φ after diffuser ( x , y ) = φ before diffuser ( x , y ) 2 π λ δ p a p e r T p a p e r × R a n d o m   S c r e e n ( x , y ) .
Ψ ( x , y , z = Δ ) = 1 exp { i Δ k 2 k x 2 k y 2 } Ψ ( x , y , z = 0 ) .
Ψ ( x , y , z = z 0 ) = exp { i k j [ δ j i β j ] d z } Ψ ( x , y , z = 0 ) .
V = I max I min I max + I min .
M = R ' 1 + R 2 R ' 1 ,

Metrics