Abstract

The adaptive beam pointing concept has been revisited for the purpose of controlled transmission of laser energy from an optical transmitter to a target. After illumination, a bidirectional link is established by a retro-reflector on the target and an amplifier-phase conjugate mirror (A-PCM) on the transmitter. By setting the retro-reflector’s aperture smaller than the diffraction limited spot size but big enough to provide sufficient amount of optical feedback, a stable link can be maintained and light that hits the retro-reflector’s surrounded area can simultaneously be reconverted into usable electric energy. The phase conjugate feedback ensures that amplifier’s distortions are compensated and the target tracked accurately. After deriving basic arithmetic expressions for the proposed system, a section is devoted for the motivation of free-space laser power transmission which is supposed to find varied applicability in space. As an example, power transmission from a satellite to the earth is described where recently proposed solar power generating structures on high-altitudes receive the power above the clouds to provide constant energy supply. In the experimental part, an A-PCM setup with reflectivity of about RA-PCM = 100 was realized using a semiconductor optical amplifier and a photorefractive self-pumped PCM. Simulation results show that a reflectivity of RA-PCM>1000 could be obtained by improving the self-pumped PCM’s efficiency. That would lead to a transmission efficiency of η>90%.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Tesla, “The transmission of electrical energy without wires,” Elec. World Eng. 35, 429–431 (1904).
  2. R. M. Dickinson, “Performance of a High-Power, 2.388-GHz Receiving Array in Wireless Power Transmission Over 1.54 km,” MTT-S Int. Microwave Symp. Digest 76, 139–141 (1976).
    [CrossRef]
  3. W. C. Brown, “The technology and application of free-space power transmission by microwave beam,” Proc. IEEE 62(1), 11–25 (1974).
    [CrossRef]
  4. M. Röger, G. Böttger, M. Dreschmann, C. Klamouris, M. Huebner, A. W. Bett, J. Becker, W. Freude, and J. Leuthold, “Optically powered fiber networks,” Opt. Express 16(26), 21821–21834 (2008).
    [CrossRef] [PubMed]
  5. H. Miyakawa, Y. Tanaka, and T. Kurokawa, “Design approaches to power-over-optical local-area-network systems,” Appl. Opt. 43(6), 1379-1389 (2004).
    [CrossRef] [PubMed]
  6. A. K. Majumdar and J. C. Ricklin, Free-Space Laser Communications (Springer, 2008).
  7. P. E. Glaser, “Power from the Sun: Its Future,” Science 162(3856), 857–861 (1968).
    [CrossRef] [PubMed]
  8. J. C. Mankins, “A fresh look at space solar power: New architectures, concepts and technologies,” Acta Astronaut. 41(4-10), 347–359 (1997).
    [CrossRef]
  9. R. L. Fork, “High Energy lasers may put power in space,” Laser Focus World 37, 113–117 (2001).
  10. M. Smith, R. L. Fork, and S. Cole, “Safe delivery of optical power from space,” Opt. Express 8(10), 537–546 (2001).
    [CrossRef] [PubMed]
  11. Znamya space mirror, e.g. V. Syromiatnikov, “Znamya-2 demonstration flight experiment,” http://src.space.ru/page_30e.htm .
  12. G. S. Aglietti, S. Redi, A. R. Tatnall, and T. Markvart, “Harnessing High-Altitude Solar Power,” IEEE J. Energy Conversion 24(2), 442–451 (2009).
    [CrossRef]
  13. N. Kawashima, “The Importance of Development of a Rover for the Direct Confirmation of the Existence of Ice on the Moon,” Trans. Jpn. Soc. Aeronaut. Space Sci. 43(139), 34–35 (2000).
    [CrossRef]
  14. G. Landis, “Satellite eclipse power by laser illumination,” Acta Astronaut. 25(4), 229–233 (1991).
    [CrossRef]
  15. G. A. Landis, and M. Stavnes, S., Oleson, and J. Bozek, “Space Transfer with Ground-based Laser / Electric Propulsion,” presented at the AIAA-92–3213: Laser Power Beaming 1992, Nashville, TN (United States), 6–8 Jul 1992.
  16. G. A. Landis, “Moonbase Night Power by Laser Illumination,” AIAA J. Propulsion and Power 8(1), 251–254 (1992).
    [CrossRef]
  17. F. Steinsiek, W. P. Foth, K. H. Weber, C. A. Schäfer, and H. J. Foth, “Method and apparatus for transmitting energy via a laser beam,” European Patent 1566902 (2005), US Patent 7423767 (2008).
  18. A. Erteza, “Boresighting a Gaussian beam on a specular target point: a method using conical scan,” Appl. Opt. 15(3), 656–660 (1976).
    [CrossRef] [PubMed]
  19. I. Buske and W. Riede, “Sub-µrad laser beam tracking,” Proc. SPIE 6397, 63970J (2006).
    [CrossRef]
  20. F. Steinsiek, W. P. Foth, K. H. Weber, C. A. Schäfer, and H. J. Foth, “Wireless power transmission experiments an early contribution to planetary exploration missions,” in Proc. 54th International Astronautical Congress, Bremen, Germany, 29 Sept.–4 Oct. 2003, Paper IAC-03-R.3.06.
  21. V. Wang and C. R. Giuliano, “Correction of phase aberrations via stimulated Brillouin scattering,” Opt. Lett. 2(1), 4–6 (1978).
    [CrossRef] [PubMed]
  22. P. S. Lebow and J. R. Ackerman, “Phase conjugation through Brillouin-enhanced four-wave mixing over an extended atmospheric path,” Opt. Lett. 14(4), 236–238 (1989).
    [CrossRef] [PubMed]
  23. H. Bruesselbach, D. C. Jones, D. A. Rockwell, R. C. Lind, and G. Vogel, “Real-time atmospheric compensation by stimulated Brillouin-scattering phase conjugation,” J. Opt. Soc. Am. B 12(8), 1434–1447 (1995).
    [CrossRef]
  24. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical Phased Array Technology,” Proc. IEEE 84(2), 268–298 (1996).
    [CrossRef]
  25. C. A. Schäfer, O. Matoba, and N. Kaya, “Tracking system by phase conjugation for laser energy transmission,” Proc. SPIE 6454, 64540A (2007).
    [CrossRef]
  26. R. Pascotta, “Encyclopedia of Laser Physics and Technology-Beam Quality,” http://www.rp-photonics.com/beam_quality.html .
  27. E. Jakeman and K. D. Ridley, “Incomplete phase conjugation through a random-phase screen. I. Theory,” J. Opt. Soc. Am. A 13(11), 2279–2287 (1996).
    [CrossRef]
  28. R. Pascotta, “Encyclopedia of Laser Physics and Technology-Laser Diodes,” http://www.rp-photonics.com/laser_diodes.html .
  29. e.g. “ EksmaOptics,” http://www.eksmaoptics.com/en , or “Jenoptik,” http://www.jold.com .
  30. S. van Riesen, U. Schubert, and A. W. Bett, “GaAs photovoltaic cells for laser power beaming at high power densities,” in Proc. 17th Eur. PV Solar Energy Conf., Munich, Germany, 2001, 18−21, Paper VA1/26.
  31. D. Krut, “PV Devices for Laser Power Conversion,” presented at the International Workshop on the Laser Energy Transmission for Space Exploration and Ground Applications, Nara, Japan 6.-7. Jun. 2004.
  32. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 34),” Prog. Photovolt. Res. Appl. 17(5), 320–326 (2009).
    [CrossRef]
  33. ASTM International, Designation G173–03e1, Standard tables for reference solar spectral irradiance: direct normal and hemispherical 37° tilted surface (2006).
  34. O. Graydon, “Solar power: A sunny solution,” Nat. Photonics 1(9), 495–496 (2007).
    [CrossRef]
  35. R. M. Dickenson, “Wireless Power Transmission Technology State of the Art,” Acta Astronaut. 53(4-10), 561–570 (2003).
    [CrossRef]
  36. K. Reed and H. J. Willenberg, “Early commercial demonstration of space solar power using ultra-lightweight arrays,” Acta Astronaut. 65(9-10), 1250–1260 (2009).
    [CrossRef]
  37. T. Omatsu, Y. Ojima, B. A. Thompson, A. Minassian, and M. J. Damzen, “150-times phase conjugation by degenerate fourwave mixing in a continuous-wave Nd:YVO4 amplifier,” Appl. Phys. B 75(4-5), 493–495 (2002).
    [CrossRef]
  38. T. Omatsu and M. J. Damzen, “Multi-watt CW output from a double-pass diode side-pumped Nd:YVO4 amplifier with a Rh:BaTiO3 phase conjugator,” Opt. Commun. 198(1-3), 135–139 (2001).
    [CrossRef]
  39. Y. A. Zakharenkov, T. O. Clatterbuck, V. V. Shkunov, A. A. Betin, D. M. Filgas, E. P. Ostby, F. P. Strohkendl, D. A. Rockwell, and R. S. Baltimore, “2-kW Average Power CW Phase-Conjugate Solid-State Laser,” IEEE J. Sel. Top. Quantum Electron. 13(3), 473–479 (2007).
    [CrossRef]
  40. e.g. M. Summerfield, “Optical Amplifiers (Semiconductor),” in Encyclopedia of Physical Science and Technology, R. A. Meyers, eds. (Elsevier Science Ltd. 2004), pp.219–235.
  41. N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, 2006).
  42. A. Minassian, G. J. Crofts, and M. J. Damzen, “A tunable self-pumped phase-conjugate laser using Ti:sapphire slab amplifiers,” Opt. Commun. 161(4-6), 338–344 (1999).
    [CrossRef]
  43. N. Huot, J.-M. C. Jonathan, and G. Roosen, “Dynamic Wavefront Correction of Nd:YAG Lasers by Self Pumped Phase Conjugation in Photorefractive BaTiO3:Rh,” Proc. IEEE 87(12), 2059–2073 (1999).
    [CrossRef]
  44. M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20(1), 12–30 (1984).
    [CrossRef]
  45. X. Yi and P. Yeh, “Effect of partial coherence on phase conjugation,” Opt. Commun. 147(1-3), 126–130 (1998).
    [CrossRef]
  46. M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. B 22(11), 2459–2467 (2005).
    [CrossRef]
  47. J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7(10), 486–488 (1982).
    [CrossRef] [PubMed]
  48. M. Cronin‐Golomb, B. Fischer, J. O. White, and A. Yariv, “Passive phase conjugate mirror based on self‐induced oscillation in an optical ring cavity,” Appl. Phys. Lett. 42(11), 919–921 (1983).
    [CrossRef]
  49. B. A. Wechsler, M. B. Klein, C. C. Nelson, and R. N. Schwartz, “Spectroscopic and photorefractive properties of infrared-sensitive rhodium-doped barium titanate,” Opt. Lett. 19(8), 536–538 (1994).
    [CrossRef] [PubMed]
  50. G. W. Ross and R. W. Eason, “Highly efficient self-pumped phase conjugation at near-infrared wavelengths by using nominally undoped BaTiO(3),” Opt. Lett. 17(16), 1104–1106 (1992).
    [CrossRef] [PubMed]
  51. I. V. Kedyk, P. Mathey, G. Gadret, O. Bidault, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Enhanced photorefractive properties of Bi-doped Sn2P2S6,” J. Opt. Soc. Am. B 25(2), 180–186 (2008).
    [CrossRef]
  52. T. Weyrauch and M. A. Vorontsov, “Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications,” Appl. Opt. 44(30), 6388–6401 (2005).
    [CrossRef] [PubMed]
  53. G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in `blue' BaTiO3,” Opt. Commun. 101(1-2), 60–64 (1993).
    [CrossRef]
  54. T. Omatsu, A. Minassian, and M. J. Damzen, “High Quality 7.5 W Continuous-Wave Operation of a Nd:YVO4 Laser with a Rh:BaTiO3 Phase Conjugate Mirror,” Jpn. J. Appl. Phys. 41(Part 1, No. 4A), 2024–2027 (2002).
    [CrossRef]
  55. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5(10), 1550–1567 (1966).
    [CrossRef] [PubMed]
  56. D. Udaiyan, G. J. Crofts, T. Omatsu, and M. J. Damzen, “Self-consistent spatial mode analysis of self-adaptive laser oscillators,” J. Opt. Soc. Am. B 15(4), 1346–1352 (1998).
    [CrossRef]

2009 (3)

G. S. Aglietti, S. Redi, A. R. Tatnall, and T. Markvart, “Harnessing High-Altitude Solar Power,” IEEE J. Energy Conversion 24(2), 442–451 (2009).
[CrossRef]

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 34),” Prog. Photovolt. Res. Appl. 17(5), 320–326 (2009).
[CrossRef]

K. Reed and H. J. Willenberg, “Early commercial demonstration of space solar power using ultra-lightweight arrays,” Acta Astronaut. 65(9-10), 1250–1260 (2009).
[CrossRef]

2008 (2)

2007 (3)

O. Graydon, “Solar power: A sunny solution,” Nat. Photonics 1(9), 495–496 (2007).
[CrossRef]

C. A. Schäfer, O. Matoba, and N. Kaya, “Tracking system by phase conjugation for laser energy transmission,” Proc. SPIE 6454, 64540A (2007).
[CrossRef]

Y. A. Zakharenkov, T. O. Clatterbuck, V. V. Shkunov, A. A. Betin, D. M. Filgas, E. P. Ostby, F. P. Strohkendl, D. A. Rockwell, and R. S. Baltimore, “2-kW Average Power CW Phase-Conjugate Solid-State Laser,” IEEE J. Sel. Top. Quantum Electron. 13(3), 473–479 (2007).
[CrossRef]

2006 (1)

I. Buske and W. Riede, “Sub-µrad laser beam tracking,” Proc. SPIE 6397, 63970J (2006).
[CrossRef]

2005 (2)

2004 (1)

2003 (1)

R. M. Dickenson, “Wireless Power Transmission Technology State of the Art,” Acta Astronaut. 53(4-10), 561–570 (2003).
[CrossRef]

2002 (2)

T. Omatsu, Y. Ojima, B. A. Thompson, A. Minassian, and M. J. Damzen, “150-times phase conjugation by degenerate fourwave mixing in a continuous-wave Nd:YVO4 amplifier,” Appl. Phys. B 75(4-5), 493–495 (2002).
[CrossRef]

T. Omatsu, A. Minassian, and M. J. Damzen, “High Quality 7.5 W Continuous-Wave Operation of a Nd:YVO4 Laser with a Rh:BaTiO3 Phase Conjugate Mirror,” Jpn. J. Appl. Phys. 41(Part 1, No. 4A), 2024–2027 (2002).
[CrossRef]

2001 (3)

T. Omatsu and M. J. Damzen, “Multi-watt CW output from a double-pass diode side-pumped Nd:YVO4 amplifier with a Rh:BaTiO3 phase conjugator,” Opt. Commun. 198(1-3), 135–139 (2001).
[CrossRef]

R. L. Fork, “High Energy lasers may put power in space,” Laser Focus World 37, 113–117 (2001).

M. Smith, R. L. Fork, and S. Cole, “Safe delivery of optical power from space,” Opt. Express 8(10), 537–546 (2001).
[CrossRef] [PubMed]

2000 (1)

N. Kawashima, “The Importance of Development of a Rover for the Direct Confirmation of the Existence of Ice on the Moon,” Trans. Jpn. Soc. Aeronaut. Space Sci. 43(139), 34–35 (2000).
[CrossRef]

1999 (2)

A. Minassian, G. J. Crofts, and M. J. Damzen, “A tunable self-pumped phase-conjugate laser using Ti:sapphire slab amplifiers,” Opt. Commun. 161(4-6), 338–344 (1999).
[CrossRef]

N. Huot, J.-M. C. Jonathan, and G. Roosen, “Dynamic Wavefront Correction of Nd:YAG Lasers by Self Pumped Phase Conjugation in Photorefractive BaTiO3:Rh,” Proc. IEEE 87(12), 2059–2073 (1999).
[CrossRef]

1998 (2)

1997 (1)

J. C. Mankins, “A fresh look at space solar power: New architectures, concepts and technologies,” Acta Astronaut. 41(4-10), 347–359 (1997).
[CrossRef]

1996 (2)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical Phased Array Technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

E. Jakeman and K. D. Ridley, “Incomplete phase conjugation through a random-phase screen. I. Theory,” J. Opt. Soc. Am. A 13(11), 2279–2287 (1996).
[CrossRef]

1995 (1)

1994 (1)

1993 (1)

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in `blue' BaTiO3,” Opt. Commun. 101(1-2), 60–64 (1993).
[CrossRef]

1992 (2)

1991 (1)

G. Landis, “Satellite eclipse power by laser illumination,” Acta Astronaut. 25(4), 229–233 (1991).
[CrossRef]

1989 (1)

1984 (1)

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20(1), 12–30 (1984).
[CrossRef]

1983 (1)

M. Cronin‐Golomb, B. Fischer, J. O. White, and A. Yariv, “Passive phase conjugate mirror based on self‐induced oscillation in an optical ring cavity,” Appl. Phys. Lett. 42(11), 919–921 (1983).
[CrossRef]

1982 (1)

1978 (1)

1976 (2)

A. Erteza, “Boresighting a Gaussian beam on a specular target point: a method using conical scan,” Appl. Opt. 15(3), 656–660 (1976).
[CrossRef] [PubMed]

R. M. Dickinson, “Performance of a High-Power, 2.388-GHz Receiving Array in Wireless Power Transmission Over 1.54 km,” MTT-S Int. Microwave Symp. Digest 76, 139–141 (1976).
[CrossRef]

1974 (1)

W. C. Brown, “The technology and application of free-space power transmission by microwave beam,” Proc. IEEE 62(1), 11–25 (1974).
[CrossRef]

1968 (1)

P. E. Glaser, “Power from the Sun: Its Future,” Science 162(3856), 857–861 (1968).
[CrossRef] [PubMed]

1966 (1)

1904 (1)

N. Tesla, “The transmission of electrical energy without wires,” Elec. World Eng. 35, 429–431 (1904).

Ackerman, J. R.

Aglietti, G. S.

G. S. Aglietti, S. Redi, A. R. Tatnall, and T. Markvart, “Harnessing High-Altitude Solar Power,” IEEE J. Energy Conversion 24(2), 442–451 (2009).
[CrossRef]

Baltimore, R. S.

Y. A. Zakharenkov, T. O. Clatterbuck, V. V. Shkunov, A. A. Betin, D. M. Filgas, E. P. Ostby, F. P. Strohkendl, D. A. Rockwell, and R. S. Baltimore, “2-kW Average Power CW Phase-Conjugate Solid-State Laser,” IEEE J. Sel. Top. Quantum Electron. 13(3), 473–479 (2007).
[CrossRef]

Becker, J.

Betin, A. A.

Y. A. Zakharenkov, T. O. Clatterbuck, V. V. Shkunov, A. A. Betin, D. M. Filgas, E. P. Ostby, F. P. Strohkendl, D. A. Rockwell, and R. S. Baltimore, “2-kW Average Power CW Phase-Conjugate Solid-State Laser,” IEEE J. Sel. Top. Quantum Electron. 13(3), 473–479 (2007).
[CrossRef]

Bett, A. W.

Bidault, O.

Böttger, G.

Brown, W. C.

W. C. Brown, “The technology and application of free-space power transmission by microwave beam,” Proc. IEEE 62(1), 11–25 (1974).
[CrossRef]

Bruesselbach, H.

Buske, I.

I. Buske and W. Riede, “Sub-µrad laser beam tracking,” Proc. SPIE 6397, 63970J (2006).
[CrossRef]

Clatterbuck, T. O.

Y. A. Zakharenkov, T. O. Clatterbuck, V. V. Shkunov, A. A. Betin, D. M. Filgas, E. P. Ostby, F. P. Strohkendl, D. A. Rockwell, and R. S. Baltimore, “2-kW Average Power CW Phase-Conjugate Solid-State Laser,” IEEE J. Sel. Top. Quantum Electron. 13(3), 473–479 (2007).
[CrossRef]

Cole, S.

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical Phased Array Technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Crofts, G. J.

A. Minassian, G. J. Crofts, and M. J. Damzen, “A tunable self-pumped phase-conjugate laser using Ti:sapphire slab amplifiers,” Opt. Commun. 161(4-6), 338–344 (1999).
[CrossRef]

D. Udaiyan, G. J. Crofts, T. Omatsu, and M. J. Damzen, “Self-consistent spatial mode analysis of self-adaptive laser oscillators,” J. Opt. Soc. Am. B 15(4), 1346–1352 (1998).
[CrossRef]

Cronin-Golomb, M.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20(1), 12–30 (1984).
[CrossRef]

M. Cronin‐Golomb, B. Fischer, J. O. White, and A. Yariv, “Passive phase conjugate mirror based on self‐induced oscillation in an optical ring cavity,” Appl. Phys. Lett. 42(11), 919–921 (1983).
[CrossRef]

Damzen, M. J.

T. Omatsu, A. Minassian, and M. J. Damzen, “High Quality 7.5 W Continuous-Wave Operation of a Nd:YVO4 Laser with a Rh:BaTiO3 Phase Conjugate Mirror,” Jpn. J. Appl. Phys. 41(Part 1, No. 4A), 2024–2027 (2002).
[CrossRef]

T. Omatsu, Y. Ojima, B. A. Thompson, A. Minassian, and M. J. Damzen, “150-times phase conjugation by degenerate fourwave mixing in a continuous-wave Nd:YVO4 amplifier,” Appl. Phys. B 75(4-5), 493–495 (2002).
[CrossRef]

T. Omatsu and M. J. Damzen, “Multi-watt CW output from a double-pass diode side-pumped Nd:YVO4 amplifier with a Rh:BaTiO3 phase conjugator,” Opt. Commun. 198(1-3), 135–139 (2001).
[CrossRef]

A. Minassian, G. J. Crofts, and M. J. Damzen, “A tunable self-pumped phase-conjugate laser using Ti:sapphire slab amplifiers,” Opt. Commun. 161(4-6), 338–344 (1999).
[CrossRef]

D. Udaiyan, G. J. Crofts, T. Omatsu, and M. J. Damzen, “Self-consistent spatial mode analysis of self-adaptive laser oscillators,” J. Opt. Soc. Am. B 15(4), 1346–1352 (1998).
[CrossRef]

Dickenson, R. M.

R. M. Dickenson, “Wireless Power Transmission Technology State of the Art,” Acta Astronaut. 53(4-10), 561–570 (2003).
[CrossRef]

Dickinson, R. M.

R. M. Dickinson, “Performance of a High-Power, 2.388-GHz Receiving Array in Wireless Power Transmission Over 1.54 km,” MTT-S Int. Microwave Symp. Digest 76, 139–141 (1976).
[CrossRef]

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical Phased Array Technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Dreschmann, M.

Eason, R. W.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in `blue' BaTiO3,” Opt. Commun. 101(1-2), 60–64 (1993).
[CrossRef]

G. W. Ross and R. W. Eason, “Highly efficient self-pumped phase conjugation at near-infrared wavelengths by using nominally undoped BaTiO(3),” Opt. Lett. 17(16), 1104–1106 (1992).
[CrossRef] [PubMed]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 34),” Prog. Photovolt. Res. Appl. 17(5), 320–326 (2009).
[CrossRef]

Erteza, A.

Feinberg, J.

Filgas, D. M.

Y. A. Zakharenkov, T. O. Clatterbuck, V. V. Shkunov, A. A. Betin, D. M. Filgas, E. P. Ostby, F. P. Strohkendl, D. A. Rockwell, and R. S. Baltimore, “2-kW Average Power CW Phase-Conjugate Solid-State Laser,” IEEE J. Sel. Top. Quantum Electron. 13(3), 473–479 (2007).
[CrossRef]

Fischer, B.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20(1), 12–30 (1984).
[CrossRef]

M. Cronin‐Golomb, B. Fischer, J. O. White, and A. Yariv, “Passive phase conjugate mirror based on self‐induced oscillation in an optical ring cavity,” Appl. Phys. Lett. 42(11), 919–921 (1983).
[CrossRef]

Fork, R. L.

R. L. Fork, “High Energy lasers may put power in space,” Laser Focus World 37, 113–117 (2001).

M. Smith, R. L. Fork, and S. Cole, “Safe delivery of optical power from space,” Opt. Express 8(10), 537–546 (2001).
[CrossRef] [PubMed]

Freude, W.

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical Phased Array Technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Gadret, G.

Garrett, M. H.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in `blue' BaTiO3,” Opt. Commun. 101(1-2), 60–64 (1993).
[CrossRef]

Giuliano, C. R.

Glaser, P. E.

P. E. Glaser, “Power from the Sun: Its Future,” Science 162(3856), 857–861 (1968).
[CrossRef] [PubMed]

Grabar, A. A.

Graydon, O.

O. Graydon, “Solar power: A sunny solution,” Nat. Photonics 1(9), 495–496 (2007).
[CrossRef]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 34),” Prog. Photovolt. Res. Appl. 17(5), 320–326 (2009).
[CrossRef]

Günter, P.

Haertle, D.

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 34),” Prog. Photovolt. Res. Appl. 17(5), 320–326 (2009).
[CrossRef]

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical Phased Array Technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical Phased Array Technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Hribek, P.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in `blue' BaTiO3,” Opt. Commun. 101(1-2), 60–64 (1993).
[CrossRef]

Huebner, M.

Huot, N.

N. Huot, J.-M. C. Jonathan, and G. Roosen, “Dynamic Wavefront Correction of Nd:YAG Lasers by Self Pumped Phase Conjugation in Photorefractive BaTiO3:Rh,” Proc. IEEE 87(12), 2059–2073 (1999).
[CrossRef]

Jakeman, E.

Jazbinšek, M.

Jonathan, J.-M. C.

N. Huot, J.-M. C. Jonathan, and G. Roosen, “Dynamic Wavefront Correction of Nd:YAG Lasers by Self Pumped Phase Conjugation in Photorefractive BaTiO3:Rh,” Proc. IEEE 87(12), 2059–2073 (1999).
[CrossRef]

Jones, D. C.

Kawashima, N.

N. Kawashima, “The Importance of Development of a Rover for the Direct Confirmation of the Existence of Ice on the Moon,” Trans. Jpn. Soc. Aeronaut. Space Sci. 43(139), 34–35 (2000).
[CrossRef]

Kaya, N.

C. A. Schäfer, O. Matoba, and N. Kaya, “Tracking system by phase conjugation for laser energy transmission,” Proc. SPIE 6454, 64540A (2007).
[CrossRef]

Kedyk, I. V.

Klamouris, C.

Klein, M. B.

Kogelnik, H.

Kurokawa, T.

Landis, G.

G. Landis, “Satellite eclipse power by laser illumination,” Acta Astronaut. 25(4), 229–233 (1991).
[CrossRef]

Landis, G. A.

G. A. Landis, “Moonbase Night Power by Laser Illumination,” AIAA J. Propulsion and Power 8(1), 251–254 (1992).
[CrossRef]

Lebow, P. S.

Leuthold, J.

Li, T.

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical Phased Array Technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Lind, R. C.

Mankins, J. C.

J. C. Mankins, “A fresh look at space solar power: New architectures, concepts and technologies,” Acta Astronaut. 41(4-10), 347–359 (1997).
[CrossRef]

Markvart, T.

G. S. Aglietti, S. Redi, A. R. Tatnall, and T. Markvart, “Harnessing High-Altitude Solar Power,” IEEE J. Energy Conversion 24(2), 442–451 (2009).
[CrossRef]

Mathey, P.

Matoba, O.

C. A. Schäfer, O. Matoba, and N. Kaya, “Tracking system by phase conjugation for laser energy transmission,” Proc. SPIE 6454, 64540A (2007).
[CrossRef]

McManamon, P. F.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical Phased Array Technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Minassian, A.

T. Omatsu, Y. Ojima, B. A. Thompson, A. Minassian, and M. J. Damzen, “150-times phase conjugation by degenerate fourwave mixing in a continuous-wave Nd:YVO4 amplifier,” Appl. Phys. B 75(4-5), 493–495 (2002).
[CrossRef]

T. Omatsu, A. Minassian, and M. J. Damzen, “High Quality 7.5 W Continuous-Wave Operation of a Nd:YVO4 Laser with a Rh:BaTiO3 Phase Conjugate Mirror,” Jpn. J. Appl. Phys. 41(Part 1, No. 4A), 2024–2027 (2002).
[CrossRef]

A. Minassian, G. J. Crofts, and M. J. Damzen, “A tunable self-pumped phase-conjugate laser using Ti:sapphire slab amplifiers,” Opt. Commun. 161(4-6), 338–344 (1999).
[CrossRef]

Miyakawa, H.

Montemezzani, G.

Nelson, C. C.

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical Phased Array Technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Ojima, Y.

T. Omatsu, Y. Ojima, B. A. Thompson, A. Minassian, and M. J. Damzen, “150-times phase conjugation by degenerate fourwave mixing in a continuous-wave Nd:YVO4 amplifier,” Appl. Phys. B 75(4-5), 493–495 (2002).
[CrossRef]

Omatsu, T.

T. Omatsu, Y. Ojima, B. A. Thompson, A. Minassian, and M. J. Damzen, “150-times phase conjugation by degenerate fourwave mixing in a continuous-wave Nd:YVO4 amplifier,” Appl. Phys. B 75(4-5), 493–495 (2002).
[CrossRef]

T. Omatsu, A. Minassian, and M. J. Damzen, “High Quality 7.5 W Continuous-Wave Operation of a Nd:YVO4 Laser with a Rh:BaTiO3 Phase Conjugate Mirror,” Jpn. J. Appl. Phys. 41(Part 1, No. 4A), 2024–2027 (2002).
[CrossRef]

T. Omatsu and M. J. Damzen, “Multi-watt CW output from a double-pass diode side-pumped Nd:YVO4 amplifier with a Rh:BaTiO3 phase conjugator,” Opt. Commun. 198(1-3), 135–139 (2001).
[CrossRef]

D. Udaiyan, G. J. Crofts, T. Omatsu, and M. J. Damzen, “Self-consistent spatial mode analysis of self-adaptive laser oscillators,” J. Opt. Soc. Am. B 15(4), 1346–1352 (1998).
[CrossRef]

Ostby, E. P.

Y. A. Zakharenkov, T. O. Clatterbuck, V. V. Shkunov, A. A. Betin, D. M. Filgas, E. P. Ostby, F. P. Strohkendl, D. A. Rockwell, and R. S. Baltimore, “2-kW Average Power CW Phase-Conjugate Solid-State Laser,” IEEE J. Sel. Top. Quantum Electron. 13(3), 473–479 (2007).
[CrossRef]

Redi, S.

G. S. Aglietti, S. Redi, A. R. Tatnall, and T. Markvart, “Harnessing High-Altitude Solar Power,” IEEE J. Energy Conversion 24(2), 442–451 (2009).
[CrossRef]

Reed, K.

K. Reed and H. J. Willenberg, “Early commercial demonstration of space solar power using ultra-lightweight arrays,” Acta Astronaut. 65(9-10), 1250–1260 (2009).
[CrossRef]

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical Phased Array Technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Ridley, K. D.

Riede, W.

I. Buske and W. Riede, “Sub-µrad laser beam tracking,” Proc. SPIE 6397, 63970J (2006).
[CrossRef]

Rockwell, D. A.

Y. A. Zakharenkov, T. O. Clatterbuck, V. V. Shkunov, A. A. Betin, D. M. Filgas, E. P. Ostby, F. P. Strohkendl, D. A. Rockwell, and R. S. Baltimore, “2-kW Average Power CW Phase-Conjugate Solid-State Laser,” IEEE J. Sel. Top. Quantum Electron. 13(3), 473–479 (2007).
[CrossRef]

H. Bruesselbach, D. C. Jones, D. A. Rockwell, R. C. Lind, and G. Vogel, “Real-time atmospheric compensation by stimulated Brillouin-scattering phase conjugation,” J. Opt. Soc. Am. B 12(8), 1434–1447 (1995).
[CrossRef]

Röger, M.

Roosen, G.

N. Huot, J.-M. C. Jonathan, and G. Roosen, “Dynamic Wavefront Correction of Nd:YAG Lasers by Self Pumped Phase Conjugation in Photorefractive BaTiO3:Rh,” Proc. IEEE 87(12), 2059–2073 (1999).
[CrossRef]

Ross, G. W.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in `blue' BaTiO3,” Opt. Commun. 101(1-2), 60–64 (1993).
[CrossRef]

G. W. Ross and R. W. Eason, “Highly efficient self-pumped phase conjugation at near-infrared wavelengths by using nominally undoped BaTiO(3),” Opt. Lett. 17(16), 1104–1106 (1992).
[CrossRef] [PubMed]

Rytz, D.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in `blue' BaTiO3,” Opt. Commun. 101(1-2), 60–64 (1993).
[CrossRef]

Schäfer, C. A.

C. A. Schäfer, O. Matoba, and N. Kaya, “Tracking system by phase conjugation for laser energy transmission,” Proc. SPIE 6454, 64540A (2007).
[CrossRef]

Schwartz, R. N.

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical Phased Array Technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Shkunov, V. V.

Y. A. Zakharenkov, T. O. Clatterbuck, V. V. Shkunov, A. A. Betin, D. M. Filgas, E. P. Ostby, F. P. Strohkendl, D. A. Rockwell, and R. S. Baltimore, “2-kW Average Power CW Phase-Conjugate Solid-State Laser,” IEEE J. Sel. Top. Quantum Electron. 13(3), 473–479 (2007).
[CrossRef]

Smith, M.

Stoika, I. M.

Strohkendl, F. P.

Y. A. Zakharenkov, T. O. Clatterbuck, V. V. Shkunov, A. A. Betin, D. M. Filgas, E. P. Ostby, F. P. Strohkendl, D. A. Rockwell, and R. S. Baltimore, “2-kW Average Power CW Phase-Conjugate Solid-State Laser,” IEEE J. Sel. Top. Quantum Electron. 13(3), 473–479 (2007).
[CrossRef]

Tanaka, Y.

Tatnall, A. R.

G. S. Aglietti, S. Redi, A. R. Tatnall, and T. Markvart, “Harnessing High-Altitude Solar Power,” IEEE J. Energy Conversion 24(2), 442–451 (2009).
[CrossRef]

Tesla, N.

N. Tesla, “The transmission of electrical energy without wires,” Elec. World Eng. 35, 429–431 (1904).

Thompson, B. A.

T. Omatsu, Y. Ojima, B. A. Thompson, A. Minassian, and M. J. Damzen, “150-times phase conjugation by degenerate fourwave mixing in a continuous-wave Nd:YVO4 amplifier,” Appl. Phys. B 75(4-5), 493–495 (2002).
[CrossRef]

Udaiyan, D.

Vogel, G.

Vorontsov, M. A.

Vysochanskii, Y. M.

Wang, V.

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 34),” Prog. Photovolt. Res. Appl. 17(5), 320–326 (2009).
[CrossRef]

Watson, E. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical Phased Array Technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Wechsler, B. A.

Weyrauch, T.

White, J. O.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20(1), 12–30 (1984).
[CrossRef]

M. Cronin‐Golomb, B. Fischer, J. O. White, and A. Yariv, “Passive phase conjugate mirror based on self‐induced oscillation in an optical ring cavity,” Appl. Phys. Lett. 42(11), 919–921 (1983).
[CrossRef]

Willenberg, H. J.

K. Reed and H. J. Willenberg, “Early commercial demonstration of space solar power using ultra-lightweight arrays,” Acta Astronaut. 65(9-10), 1250–1260 (2009).
[CrossRef]

Yariv, A.

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20(1), 12–30 (1984).
[CrossRef]

M. Cronin‐Golomb, B. Fischer, J. O. White, and A. Yariv, “Passive phase conjugate mirror based on self‐induced oscillation in an optical ring cavity,” Appl. Phys. Lett. 42(11), 919–921 (1983).
[CrossRef]

Yeh, P.

X. Yi and P. Yeh, “Effect of partial coherence on phase conjugation,” Opt. Commun. 147(1-3), 126–130 (1998).
[CrossRef]

Yi, X.

X. Yi and P. Yeh, “Effect of partial coherence on phase conjugation,” Opt. Commun. 147(1-3), 126–130 (1998).
[CrossRef]

Zakharenkov, Y. A.

Y. A. Zakharenkov, T. O. Clatterbuck, V. V. Shkunov, A. A. Betin, D. M. Filgas, E. P. Ostby, F. P. Strohkendl, D. A. Rockwell, and R. S. Baltimore, “2-kW Average Power CW Phase-Conjugate Solid-State Laser,” IEEE J. Sel. Top. Quantum Electron. 13(3), 473–479 (2007).
[CrossRef]

Acta Astronaut. (4)

J. C. Mankins, “A fresh look at space solar power: New architectures, concepts and technologies,” Acta Astronaut. 41(4-10), 347–359 (1997).
[CrossRef]

G. Landis, “Satellite eclipse power by laser illumination,” Acta Astronaut. 25(4), 229–233 (1991).
[CrossRef]

R. M. Dickenson, “Wireless Power Transmission Technology State of the Art,” Acta Astronaut. 53(4-10), 561–570 (2003).
[CrossRef]

K. Reed and H. J. Willenberg, “Early commercial demonstration of space solar power using ultra-lightweight arrays,” Acta Astronaut. 65(9-10), 1250–1260 (2009).
[CrossRef]

AIAA J. Propulsion and Power (1)

G. A. Landis, “Moonbase Night Power by Laser Illumination,” AIAA J. Propulsion and Power 8(1), 251–254 (1992).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

T. Omatsu, Y. Ojima, B. A. Thompson, A. Minassian, and M. J. Damzen, “150-times phase conjugation by degenerate fourwave mixing in a continuous-wave Nd:YVO4 amplifier,” Appl. Phys. B 75(4-5), 493–495 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

M. Cronin‐Golomb, B. Fischer, J. O. White, and A. Yariv, “Passive phase conjugate mirror based on self‐induced oscillation in an optical ring cavity,” Appl. Phys. Lett. 42(11), 919–921 (1983).
[CrossRef]

Elec. World Eng. (1)

N. Tesla, “The transmission of electrical energy without wires,” Elec. World Eng. 35, 429–431 (1904).

IEEE J. Energy Conversion (1)

G. S. Aglietti, S. Redi, A. R. Tatnall, and T. Markvart, “Harnessing High-Altitude Solar Power,” IEEE J. Energy Conversion 24(2), 442–451 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20(1), 12–30 (1984).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. A. Zakharenkov, T. O. Clatterbuck, V. V. Shkunov, A. A. Betin, D. M. Filgas, E. P. Ostby, F. P. Strohkendl, D. A. Rockwell, and R. S. Baltimore, “2-kW Average Power CW Phase-Conjugate Solid-State Laser,” IEEE J. Sel. Top. Quantum Electron. 13(3), 473–479 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys. (1)

T. Omatsu, A. Minassian, and M. J. Damzen, “High Quality 7.5 W Continuous-Wave Operation of a Nd:YVO4 Laser with a Rh:BaTiO3 Phase Conjugate Mirror,” Jpn. J. Appl. Phys. 41(Part 1, No. 4A), 2024–2027 (2002).
[CrossRef]

Laser Focus World (1)

R. L. Fork, “High Energy lasers may put power in space,” Laser Focus World 37, 113–117 (2001).

MTT-S Int. Microwave Symp. Digest (1)

R. M. Dickinson, “Performance of a High-Power, 2.388-GHz Receiving Array in Wireless Power Transmission Over 1.54 km,” MTT-S Int. Microwave Symp. Digest 76, 139–141 (1976).
[CrossRef]

Nat. Photonics (1)

O. Graydon, “Solar power: A sunny solution,” Nat. Photonics 1(9), 495–496 (2007).
[CrossRef]

Opt. Commun. (4)

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in `blue' BaTiO3,” Opt. Commun. 101(1-2), 60–64 (1993).
[CrossRef]

X. Yi and P. Yeh, “Effect of partial coherence on phase conjugation,” Opt. Commun. 147(1-3), 126–130 (1998).
[CrossRef]

A. Minassian, G. J. Crofts, and M. J. Damzen, “A tunable self-pumped phase-conjugate laser using Ti:sapphire slab amplifiers,” Opt. Commun. 161(4-6), 338–344 (1999).
[CrossRef]

T. Omatsu and M. J. Damzen, “Multi-watt CW output from a double-pass diode side-pumped Nd:YVO4 amplifier with a Rh:BaTiO3 phase conjugator,” Opt. Commun. 198(1-3), 135–139 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Proc. IEEE (3)

N. Huot, J.-M. C. Jonathan, and G. Roosen, “Dynamic Wavefront Correction of Nd:YAG Lasers by Self Pumped Phase Conjugation in Photorefractive BaTiO3:Rh,” Proc. IEEE 87(12), 2059–2073 (1999).
[CrossRef]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical Phased Array Technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

W. C. Brown, “The technology and application of free-space power transmission by microwave beam,” Proc. IEEE 62(1), 11–25 (1974).
[CrossRef]

Proc. SPIE (2)

C. A. Schäfer, O. Matoba, and N. Kaya, “Tracking system by phase conjugation for laser energy transmission,” Proc. SPIE 6454, 64540A (2007).
[CrossRef]

I. Buske and W. Riede, “Sub-µrad laser beam tracking,” Proc. SPIE 6397, 63970J (2006).
[CrossRef]

Prog. Photovolt. Res. Appl. (1)

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 34),” Prog. Photovolt. Res. Appl. 17(5), 320–326 (2009).
[CrossRef]

Science (1)

P. E. Glaser, “Power from the Sun: Its Future,” Science 162(3856), 857–861 (1968).
[CrossRef] [PubMed]

Trans. Jpn. Soc. Aeronaut. Space Sci. (1)

N. Kawashima, “The Importance of Development of a Rover for the Direct Confirmation of the Existence of Ice on the Moon,” Trans. Jpn. Soc. Aeronaut. Space Sci. 43(139), 34–35 (2000).
[CrossRef]

Other (13)

F. Steinsiek, W. P. Foth, K. H. Weber, C. A. Schäfer, and H. J. Foth, “Method and apparatus for transmitting energy via a laser beam,” European Patent 1566902 (2005), US Patent 7423767 (2008).

G. A. Landis, and M. Stavnes, S., Oleson, and J. Bozek, “Space Transfer with Ground-based Laser / Electric Propulsion,” presented at the AIAA-92–3213: Laser Power Beaming 1992, Nashville, TN (United States), 6–8 Jul 1992.

A. K. Majumdar and J. C. Ricklin, Free-Space Laser Communications (Springer, 2008).

Znamya space mirror, e.g. V. Syromiatnikov, “Znamya-2 demonstration flight experiment,” http://src.space.ru/page_30e.htm .

F. Steinsiek, W. P. Foth, K. H. Weber, C. A. Schäfer, and H. J. Foth, “Wireless power transmission experiments an early contribution to planetary exploration missions,” in Proc. 54th International Astronautical Congress, Bremen, Germany, 29 Sept.–4 Oct. 2003, Paper IAC-03-R.3.06.

R. Pascotta, “Encyclopedia of Laser Physics and Technology-Beam Quality,” http://www.rp-photonics.com/beam_quality.html .

R. Pascotta, “Encyclopedia of Laser Physics and Technology-Laser Diodes,” http://www.rp-photonics.com/laser_diodes.html .

e.g. “ EksmaOptics,” http://www.eksmaoptics.com/en , or “Jenoptik,” http://www.jold.com .

S. van Riesen, U. Schubert, and A. W. Bett, “GaAs photovoltaic cells for laser power beaming at high power densities,” in Proc. 17th Eur. PV Solar Energy Conf., Munich, Germany, 2001, 18−21, Paper VA1/26.

D. Krut, “PV Devices for Laser Power Conversion,” presented at the International Workshop on the Laser Energy Transmission for Space Exploration and Ground Applications, Nara, Japan 6.-7. Jun. 2004.

ASTM International, Designation G173–03e1, Standard tables for reference solar spectral irradiance: direct normal and hemispherical 37° tilted surface (2006).

e.g. M. Summerfield, “Optical Amplifiers (Semiconductor),” in Encyclopedia of Physical Science and Technology, R. A. Meyers, eds. (Elsevier Science Ltd. 2004), pp.219–235.

N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Shown is the intended optical system for power transmission. (a) Initially, the transmitter, in this scenario a satellite, with integrated phase conjugate mirror is illuminated by a light source which is placed in the center on the receiver, in this scenario a high altitude platform (HAP). (b) Incident light is amplified, phase conjugated and transmitted back to the receiver where it is incident on the photovoltaic cell area and on a sub-diffraction limited spot size CCR. The light incident on the latter is reflected back to the transmitter in order to keep the process running. Power transmission is achieved by the remaining light that is converted into useable electric power by the surrounded photovoltaic cells.

Fig. 2
Fig. 2

Power receiver architecture for (a) the setup successfully tested in [20] and (b) the setup proposed in this study. Dark, hatched areas represent the solar cell area and gray triangular areas represent a CCR/CCRs. The bright spot in the center in (b) indicates the illuminator’s aperture. The intended illuminance on the receiver is plotted below.

Fig. 3
Fig. 3

Block diagram of the optical control loop.

Fig. 4
Fig. 4

Efficiency scheme for different ways to collect solar energy. PGround, PHAP and PGEO embodies the availability of the link from the sun to the ground, to the HAP and to the satellite in geostationary orbit, respectively. Power transmission from the satellite to the HAP is considered to be done by laser while the transmission from the HAP to the ground by a cable or microwaves.

Fig. 5
Fig. 5

High-reflective phase conjugate mirror (PCM) consisting of a self-pumped PCM and an optical amplifier.

Fig. 6
Fig. 6

Experimental setup for testing the SOA-PCM system. M1-M3: mirrors, BS: beamsplitter, POL: polarizer, λ/2: half-wave plate, BP-Filter: band-pass filter, ND-Filter: neutral density filter.

Fig. 7
Fig. 7

Spectra of the output signal for several input powers.

Fig. 8
Fig. 8

The measured degree of coherence of the output signal at Pin = 27µW input power.

Fig. 9
Fig. 9

Output power and reflectivity of the PCM-SOA setup as a function of the input power.

Tables (2)

Tables Icon

Table 1 Measured DOC of the amplified signal at a delay of Δx = 1 cm as a function of the input power.

Tables Icon

Table 2 Simulated results assuming RPCM = 20%. The link efficiency under stable operation is calculated using Eq. (6) with RPCM = RA-PCM.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

θ D i v = M 2 λ π ω 0 ,
T = ( ω T ( L ) D C C R ) 2 = ( 4 π M 2 λ L D C C R D T ) 2 ,
P t r a n s = P i n c R P C M .
P i n c = P C C R ( D T ω C C R ( L ) ) 2 = P t r a n s ( π 4 ) 2 [ ( D T D C C R ) 2 2.44 ( M 2 λ L ) 2 ] 2 = P t r a n s ( 4 π ) 2 1 2.44 2 T 2 ,
R P C M = ( 2.44 π 4 ) 2 T 2 4 T 2 .
η = ω T 2 D C C R 2 ω T 2 = 1 1 T 1 ( 4 / R P C M ) 1 2 .
R A P C M = G 0 R P C M G 0 .
d P d z = [ g ( P ) γ s c ] P ,
g ( P ) = g 0 1 + P P s a t ,
P s a t G 0 P s , i n 2 / ln 2 ,
P o u t = G s p P i n + P A S E ,
P A S E = μ h υ Δ υ ( G 0 1 ) ,

Metrics