Abstract

Three variants of binary blazed gratings with subwavelength features are considered, which have high first-order efficiencies in the non-paraxial domain for arbitrarily polarized light. A combination of effective medium theory and further parametric optimization with the Fourier modal method are used in design. Experimental demonstration is provided by electron beam lithography on a structure etched in a Si3N4 layer on top of a SiO2 substrate, with period ~ 3.5λ at λ = 633 nm. The measured efficiency (81% for TE and 85% for TM polarization) agrees well with the calculated value, 84%.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Stork, N. Streibl, H. Haidner, and P. Kipfer, "Artificial distributed-index media fabricated by zero-order gratings," Opt. Lett. 16, 1921-1923 (1991).
    [CrossRef] [PubMed]
  2. M. W. Farn, "Binary gratings with increased efficiency," Appl. Opt. 31, 4453-4458 (1992).
    [CrossRef] [PubMed]
  3. H. Haidner, J. T. Sheridan, and N. Streibl, "Dielectric binary blazed gratings," Appl. Opt. 32, 4276-4278 (1993).
    [CrossRef] [PubMed]
  4. M. E. Warren, R. E. Smith, G. A. Vawter, and J. R. Wendt, "High-efficiency subwavelength diffractive optical element in GaAs for 975 nm," Opt. Lett. 20, 1441-1443 (1995).
    [CrossRef] [PubMed]
  5. S. Astilean, P. Lalanne, P. Chavel, E. Cambril, and H. Launois, "High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633 nm," Opt. Lett. 23, 552-554 (1998).
    [CrossRef]
  6. F. T. Chen and H. G. Graighead, "Diffractive phase elements based on two-dimensional artificial dielectrics," Opt. Lett. 20, 121-123 (1995).
    [CrossRef] [PubMed]
  7. M. Kuittinen, J. Turunen, and P. Vahimaa, "Rigorous analysis and optimization of subwavelength-structured binary dielectric beam deflector gratings," J. Mod. Opt. 45, 133-142 (1998).
    [CrossRef]
  8. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, "Blazed binary subwavelength gratings with efficiencies larger than those of conventional ´echelette gratings," Opt. Lett. 23, 1081-1083 (1998).
    [CrossRef]
  9. Q1. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, "Design and fabrication of the blazed binary diffractive elements with sampling periods smaller than the structural cutoff," J. Opt. Soc. Am. A 16, 1143-1156 (1999).
    [CrossRef]
  10. C. Sauvan, P. Lalanne, and M.-S. L. Lee, "Broadband blazing with artificial dielectrics," Opt. Lett. 29, 1593-1595 (2004).
    [CrossRef] [PubMed]
  11. M.-S. L. Lee, P. Lalanne, J.-C. Rodier, and E. Cambril, "Wide-field-angle behavior of blazed-binary gratings in the resonance domain," Opt. Lett. 25, 1690-1692 (2000).
    [CrossRef]
  12. Q2. M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, and Y. Chen, "Imaging with blazed-binary diffractive elements," J. Opt. A 4, S119-S124 (2002).
  13. Q3. H. J. Hyv¨arinen, J. Turunen, and P. Saarikko, "Efficiency optimization of blazed effective-medium gratings in the resonance domain," J. Opt. A 10, 055005 (2008).
  14. E. Noponen, J. Turunen, and A. Vasara, "Parametric optimization of the multilevel diffractive optical elements by electromagnetic theory," Appl. Opt. 31, 5910-5912 (1992).
    [CrossRef] [PubMed]
  15. E. Popov, J. Hoose, B. Frankel, C. Keast, M. Fritze, T. y. Fan, D. Yost, and S. Rabe, "Low polarization dependent diffraction grating for wavelength demultiplexing," Opt. Express 12, 269-275 (2004).
    [CrossRef] [PubMed]
  16. N. Destouches, A. V. Tishchenko, J. C. Pommier, S. Reynard, O. Parriaux, S. Tochev, and M. Abdou Ahmed, "99% efficiency measured in the −1st order of a resonant grating," Opt. Express 13, 3230-3235 (2005).
    [CrossRef] [PubMed]
  17. J. Pietarinen, T. Vallius, and J. Turunen, "Wideband four-level transmission gratings with flattened spectral efficiency," Opt. Express 14, 2583-2588 (2006).
    [CrossRef] [PubMed]
  18. J. Pietarinen and T. Vallius, "Double groove broadband gratings," Opt. Express 16, 13824-13830 (2008).
    [CrossRef] [PubMed]
  19. Q4. L. Li, "Formulation and comparison of two recursive matrix algorithm for modeling layered diffraction gratings," J. Opt. Soc. Am. A 13, 1024-1035 (1996).
    [CrossRef]
  20. Q5. P. Lalanne and G. M. Morris, "Highly improved convergence of the coupled-wave method for TM polarization," J. Opt. Soc. Am. A 13, 779-784 (1996).
    [CrossRef]
  21. Q6. L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997).
    [CrossRef]
  22. P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Volume 1: Microlithography, (SPIE-The International Society for Optical Engineering, 1997)

2008

Q3. H. J. Hyv¨arinen, J. Turunen, and P. Saarikko, "Efficiency optimization of blazed effective-medium gratings in the resonance domain," J. Opt. A 10, 055005 (2008).

J. Pietarinen and T. Vallius, "Double groove broadband gratings," Opt. Express 16, 13824-13830 (2008).
[CrossRef] [PubMed]

2006

2005

2004

2002

Q2. M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, and Y. Chen, "Imaging with blazed-binary diffractive elements," J. Opt. A 4, S119-S124 (2002).

2000

1999

1998

1997

1996

1995

1993

1992

1991

Abdou Ahmed, M.

Astilean, S.

Cambril, E.

Chavel, P.

Chen, F. T.

Chen, Y.

Q2. M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, and Y. Chen, "Imaging with blazed-binary diffractive elements," J. Opt. A 4, S119-S124 (2002).

Destouches, N.

Farn, M. W.

Frankel, B.

Fritze, M.

Graighead, H. G.

Haidner, H.

Hoose, J.

Hyv¨arinen, H. J.

Q3. H. J. Hyv¨arinen, J. Turunen, and P. Saarikko, "Efficiency optimization of blazed effective-medium gratings in the resonance domain," J. Opt. A 10, 055005 (2008).

Keast, C.

Kipfer, P.

Kuittinen, M.

M. Kuittinen, J. Turunen, and P. Vahimaa, "Rigorous analysis and optimization of subwavelength-structured binary dielectric beam deflector gratings," J. Mod. Opt. 45, 133-142 (1998).
[CrossRef]

Lalanne, P.

Launois, H.

Lee, M.-S. L.

Li, L.

Morris, G. M.

Noponen, E.

Parriaux, O.

Pietarinen, J.

Pommier, J. C.

Popov, E.

Reynard, S.

Rodier, J.-C.

Q2. M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, and Y. Chen, "Imaging with blazed-binary diffractive elements," J. Opt. A 4, S119-S124 (2002).

M.-S. L. Lee, P. Lalanne, J.-C. Rodier, and E. Cambril, "Wide-field-angle behavior of blazed-binary gratings in the resonance domain," Opt. Lett. 25, 1690-1692 (2000).
[CrossRef]

Saarikko, P.

Q3. H. J. Hyv¨arinen, J. Turunen, and P. Saarikko, "Efficiency optimization of blazed effective-medium gratings in the resonance domain," J. Opt. A 10, 055005 (2008).

Sauvan, C.

Sheridan, J. T.

Smith, R. E.

Stork, W.

Streibl, N.

Tishchenko, A. V.

Tochev, S.

Turunen, J.

Q3. H. J. Hyv¨arinen, J. Turunen, and P. Saarikko, "Efficiency optimization of blazed effective-medium gratings in the resonance domain," J. Opt. A 10, 055005 (2008).

J. Pietarinen, T. Vallius, and J. Turunen, "Wideband four-level transmission gratings with flattened spectral efficiency," Opt. Express 14, 2583-2588 (2006).
[CrossRef] [PubMed]

M. Kuittinen, J. Turunen, and P. Vahimaa, "Rigorous analysis and optimization of subwavelength-structured binary dielectric beam deflector gratings," J. Mod. Opt. 45, 133-142 (1998).
[CrossRef]

E. Noponen, J. Turunen, and A. Vasara, "Parametric optimization of the multilevel diffractive optical elements by electromagnetic theory," Appl. Opt. 31, 5910-5912 (1992).
[CrossRef] [PubMed]

Vahimaa, P.

M. Kuittinen, J. Turunen, and P. Vahimaa, "Rigorous analysis and optimization of subwavelength-structured binary dielectric beam deflector gratings," J. Mod. Opt. 45, 133-142 (1998).
[CrossRef]

Vallius, T.

Vasara, A.

Vawter, G. A.

Warren, M. E.

Wendt, J. R.

Appl. Opt.

J. Mod. Opt.

M. Kuittinen, J. Turunen, and P. Vahimaa, "Rigorous analysis and optimization of subwavelength-structured binary dielectric beam deflector gratings," J. Mod. Opt. 45, 133-142 (1998).
[CrossRef]

J. Opt. A

Q2. M.-S. L. Lee, P. Lalanne, J.-C. Rodier, E. Cambril, and Y. Chen, "Imaging with blazed-binary diffractive elements," J. Opt. A 4, S119-S124 (2002).

Q3. H. J. Hyv¨arinen, J. Turunen, and P. Saarikko, "Efficiency optimization of blazed effective-medium gratings in the resonance domain," J. Opt. A 10, 055005 (2008).

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Other

P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Volume 1: Microlithography, (SPIE-The International Society for Optical Engineering, 1997)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic top view of the structures considered. (a) Effective-material solid blocks with varying refractive index. Two-dimensionally modulated gratings with square pillars located to the left side (b), in the middle (c) and to the right side (d) of each block.

Fig. 2.
Fig. 2.

Calibration curve for the effective refractive index N of a regular Si3N4 square pillar structure with period d × d, d = 315 nm, as a function of the pillar size c × c.

Fig. 3.
Fig. 3.

Efficiencies η −1 for (a) linearly coded gratings and (b) designs after step 1. Black/circles refer to the structure in Fig. 1(a), green/squares to Fig. 1(b), red/triangles to Fig. 1(c), and blue/diamonds to Fig. 1(d).

Fig. 4.
Fig. 4.

(a) First order efficiencies after step 2 for structures in Fig. 1(d) with fixed height h = 568 nm (black line with circles) and variable height hM (red line with squares). (b) Theoretical spectral first order transmission (black line) and experimental results for three different wavelengths (blue and red circles).

Fig. 5.
Fig. 5.

SEM images of the fabricated structure. Scale bar = 1 µm.

Tables (2)

Tables Icon

Table 1. Area-coded pillar sizes cm after step 1 for structures with h = 568 nm.

Tables Icon

Table 2. Area-coded pillar sizes cm after step 2 for structures in Fig. 1(d) with h = 568 nm.

Metrics