Abstract

A broken symmetry is generally believed to be a prerequisite for plasmonic electromagnetically-induced transparency (EIT), since the asymmetry allows the excitation of the otherwise forbidden dark mode. Nevertheless, according to the picture of magnetic plasmon resonance (MPR)-mediated plasmonic EIT, we show that plasmonic EIT can be achieved even in symmetric structures, provided that we take into account the plasmonic modes beyond the fundamental ones. This not only sharpens our understanding of the existing concept, but also provides a profound insight into the plasmonic coherent interference in the near-field zone.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. . K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991).
    [CrossRef] [PubMed]
  2. . S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36 (1997).
    [CrossRef]
  3. . M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
    [CrossRef]
  4. . M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232 (2000).
    [CrossRef] [PubMed]
  5. . S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611 (1999).
    [CrossRef]
  6. . L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomicgas,” Nature (London) 397, 594 (1999).
    [CrossRef]
  7. . C. L. G. Alzer, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37 (2002).
    [CrossRef]
  8. . T. Opatrný and D.-G. Welsch, “Coupled cavities for enhancing the cross-phase-modulation in electromagnetically induced transparency,” Phys. Rev. A 64, 023805 (2001).
    [CrossRef]
  9. . D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
    [CrossRef]
  10. . A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
    [CrossRef]
  11. . L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko,“Tunable delay line with interacting whisperinggallery-mode resonators,” Opt. Lett. 29, 626 (2004).
    [CrossRef] [PubMed]
  12. . Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [CrossRef] [PubMed]
  13. . S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [CrossRef] [PubMed]
  14. . H. Xu, and B. S. Ham, “Plasmon-induced photonic switching in a metamaterial,” arXiv:0905.3102v4 [quant-ph].
  15. . Y. Lu, H. Xu, N. T. Tung, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Role of magnetic plasmon resonance in plasmonic electromagnetically-induced transparency,” arXiv:0906.4029v4 [cond-mat.mtrl-sci].
  16. . N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009).
    [CrossRef]
  17. . X.-R. Su, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, C.-C. Chen, Z.-J. Yang, and Q.-Q. Wang, “Plasmonic interferences and optical modulations in dark-bringt-dark plasmon resonators,” Appl. Phys. Lett. 96, 043113 (2010).
    [CrossRef]
  18. . N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
    [CrossRef] [PubMed]
  19. . N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009).
    [CrossRef]
  20. . P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053901 (2009).
    [CrossRef] [PubMed]
  21. . P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595 (2009).
    [CrossRef] [PubMed]
  22. . R. Singh, C. Rockstuhl, F. Lederer, and W. L. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
    [CrossRef]
  23. . V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
    [CrossRef]
  24. . E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003).
    [CrossRef] [PubMed]
  25. . F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983 (2008).
    [CrossRef] [PubMed]
  26. . G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892 (2006).
    [CrossRef] [PubMed]
  27. . S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Demonstration of metaldielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434 (2006).
    [CrossRef]
  28. . L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef] [PubMed]
  29. . S. A. Maier, “The benefits of darkness,” Nature Mater. 8, 699 (2009).
    [CrossRef]
  30. . A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007).
    [CrossRef]
  31. . M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550 (2009).
    [CrossRef] [PubMed]
  32. . T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008).
    [CrossRef]

2010 (1)

. X.-R. Su, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, C.-C. Chen, Z.-J. Yang, and Q.-Q. Wang, “Plasmonic interferences and optical modulations in dark-bringt-dark plasmon resonators,” Appl. Phys. Lett. 96, 043113 (2010).
[CrossRef]

2009 (8)

. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009).
[CrossRef]

. S. A. Maier, “The benefits of darkness,” Nature Mater. 8, 699 (2009).
[CrossRef]

. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550 (2009).
[CrossRef] [PubMed]

. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595 (2009).
[CrossRef] [PubMed]

. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009).
[CrossRef]

. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

. R. Singh, C. Rockstuhl, F. Lederer, and W. L. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
[CrossRef]

2008 (4)

. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

. T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008).
[CrossRef]

. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983 (2008).
[CrossRef] [PubMed]

2007 (2)

. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

2006 (3)

. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892 (2006).
[CrossRef] [PubMed]

. S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Demonstration of metaldielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434 (2006).
[CrossRef]

. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

2005 (2)

. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

2004 (2)

. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko,“Tunable delay line with interacting whisperinggallery-mode resonators,” Opt. Lett. 29, 626 (2004).
[CrossRef] [PubMed]

2003 (1)

. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003).
[CrossRef] [PubMed]

2002 (1)

. C. L. G. Alzer, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37 (2002).
[CrossRef]

2001 (1)

. T. Opatrný and D.-G. Welsch, “Coupled cavities for enhancing the cross-phase-modulation in electromagnetically induced transparency,” Phys. Rev. A 64, 023805 (2001).
[CrossRef]

2000 (1)

. M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232 (2000).
[CrossRef] [PubMed]

1999 (2)

. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611 (1999).
[CrossRef]

. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomicgas,” Nature (London) 397, 594 (1999).
[CrossRef]

1997 (1)

. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36 (1997).
[CrossRef]

1991 (1)

. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

Alzer, C. L. G.

. C. L. G. Alzer, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37 (2002).
[CrossRef]

Beermann, J.

. T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008).
[CrossRef]

Behroozi, C. H.

. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomicgas,” Nature (London) 397, 594 (1999).
[CrossRef]

Boller, K.-J.

. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

Boltasseva, A.

. T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008).
[CrossRef]

Boyd, R. W.

. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Bozhevolnyi, S. I.

. T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008).
[CrossRef]

Brueck, S. R. J.

Burresi, M.

. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550 (2009).
[CrossRef] [PubMed]

Chang, H.

. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Chen, C.-C.

. X.-R. Su, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, C.-C. Chen, Z.-J. Yang, and Q.-Q. Wang, “Plasmonic interferences and optical modulations in dark-bringt-dark plasmon resonators,” Appl. Phys. Lett. 96, 043113 (2010).
[CrossRef]

Clark, A. W.

. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

Cooper, J. M.

. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

Cumming, D. R. S.

. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

Dolling, G.

. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892 (2006).
[CrossRef] [PubMed]

Dorpe, P. V.

. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983 (2008).
[CrossRef] [PubMed]

Dutton, Z.

. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomicgas,” Nature (London) 397, 594 (1999).
[CrossRef]

Economou, E. N.

. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595 (2009).
[CrossRef] [PubMed]

Enkrich, C.

. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892 (2006).
[CrossRef] [PubMed]

Fan, S.

. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Fan, W. J.

Farca, G.

. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Fedotov, V. A.

. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009).
[CrossRef]

. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Fleischhauer, M.

. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009).
[CrossRef]

. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

. M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232 (2000).
[CrossRef] [PubMed]

Fu, Y. H.

. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009).
[CrossRef]

Fuller, K. A.

. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Genov, D. A.

. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Giessen, H.

. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009).
[CrossRef]

Glidle, A.

. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

Halas, N. J.

. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983 (2008).
[CrossRef] [PubMed]

. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003).
[CrossRef] [PubMed]

Hao, F.

. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983 (2008).
[CrossRef] [PubMed]

Harris, S. E.

. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomicgas,” Nature (London) 397, 594 (1999).
[CrossRef]

. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611 (1999).
[CrossRef]

. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36 (1997).
[CrossRef]

. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

Hau, L. V.

. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611 (1999).
[CrossRef]

. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomicgas,” Nature (London) 397, 594 (1999).
[CrossRef]

Heideman, R.

. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550 (2009).
[CrossRef] [PubMed]

Ilchenko, V. S.

Imamoglu, A.

. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

Kampfrath, T.

. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550 (2009).
[CrossRef] [PubMed]

Kästel, J.

. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009).
[CrossRef]

Koschny, T.

. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595 (2009).
[CrossRef] [PubMed]

Kuipers, L.

. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550 (2009).
[CrossRef] [PubMed]

Langguth, L.

. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009).
[CrossRef]

Lederer, F.

. R. Singh, C. Rockstuhl, F. Lederer, and W. L. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

Leinse, A.

. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550 (2009).
[CrossRef] [PubMed]

Li, Q.-Q.

. X.-R. Su, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, C.-C. Chen, Z.-J. Yang, and Q.-Q. Wang, “Plasmonic interferences and optical modulations in dark-bringt-dark plasmon resonators,” Appl. Phys. Lett. 96, 043113 (2010).
[CrossRef]

Linden, S.

. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892 (2006).
[CrossRef] [PubMed]

Lipson, M.

. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Liu, M.

. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009).
[CrossRef]

Lukin, M. D.

. M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232 (2000).
[CrossRef] [PubMed]

Maier, S. A.

. S. A. Maier, “The benefits of darkness,” Nature Mater. 8, 699 (2009).
[CrossRef]

. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983 (2008).
[CrossRef] [PubMed]

Maleki, L.

Malloy, K. J.

Marangos, J. P.

. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Martinez, M. A. G.

. C. L. G. Alzer, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37 (2002).
[CrossRef]

Matsko, A. B.

Naweed, A.

. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Nordlander, P.

. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983 (2008).
[CrossRef] [PubMed]

. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003).
[CrossRef] [PubMed]

Novotny, L.

. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Nussenzveig, P.

. C. L. G. Alzer, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37 (2002).
[CrossRef]

Opatrný, T.

. T. Opatrný and D.-G. Welsch, “Coupled cavities for enhancing the cross-phase-modulation in electromagnetically induced transparency,” Phys. Rev. A 64, 023805 (2001).
[CrossRef]

Osgood, R. M.

Panoiu, N. C.

Papasimakis, N.

. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009).
[CrossRef]

. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Paspalakis, E.

. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
[CrossRef]

Pfau, T.

. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009).
[CrossRef]

Povinelli, M. L.

. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Prodan, E.

. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003).
[CrossRef] [PubMed]

Prosvirnin, S. L.

. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009).
[CrossRef]

. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Radloff, C.

. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003).
[CrossRef] [PubMed]

Rockstuhl, C.

. R. Singh, C. Rockstuhl, F. Lederer, and W. L. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

Rosenberger, A. T.

. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Sandhu, S.

. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Savchenkov, A. A.

Schoenmaker, H.

. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550 (2009).
[CrossRef] [PubMed]

Shakya, J.

. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Sheridan, A. K.

. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

Shopova, S. I.

. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Singh, R.

. R. Singh, C. Rockstuhl, F. Lederer, and W. L. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

Smith, D. D.

. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Søndergaard, T.

. T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008).
[CrossRef]

Sonnefraud, Y.

. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983 (2008).
[CrossRef] [PubMed]

Soukoulis, C. M.

. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595 (2009).
[CrossRef] [PubMed]

. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892 (2006).
[CrossRef] [PubMed]

Su, X.-R.

. X.-R. Su, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, C.-C. Chen, Z.-J. Yang, and Q.-Q. Wang, “Plasmonic interferences and optical modulations in dark-bringt-dark plasmon resonators,” Appl. Phys. Lett. 96, 043113 (2010).
[CrossRef]

Tassin, P.

. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595 (2009).
[CrossRef] [PubMed]

Tsai, D. P.

. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009).
[CrossRef]

van Oosten, D.

. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550 (2009).
[CrossRef] [PubMed]

Vitanov, N. V.

. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
[CrossRef]

Wang, Q.-Q.

. X.-R. Su, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, C.-C. Chen, Z.-J. Yang, and Q.-Q. Wang, “Plasmonic interferences and optical modulations in dark-bringt-dark plasmon resonators,” Appl. Phys. Lett. 96, 043113 (2010).
[CrossRef]

Wang, Y.

. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Wegener, M.

. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892 (2006).
[CrossRef] [PubMed]

Weiss, T.

. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009).
[CrossRef]

Welsch, D.-G.

. T. Opatrný and D.-G. Welsch, “Coupled cavities for enhancing the cross-phase-modulation in electromagnetically induced transparency,” Phys. Rev. A 64, 023805 (2001).
[CrossRef]

Xu, Q.

. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Yang, Z.-J.

. X.-R. Su, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, C.-C. Chen, Z.-J. Yang, and Q.-Q. Wang, “Plasmonic interferences and optical modulations in dark-bringt-dark plasmon resonators,” Appl. Phys. Lett. 96, 043113 (2010).
[CrossRef]

Yannopapas, V.

. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
[CrossRef]

Yelin, S. F.

. M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232 (2000).
[CrossRef] [PubMed]

Zhang, L.

. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595 (2009).
[CrossRef] [PubMed]

. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

Zhang, L.-H.

. X.-R. Su, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, C.-C. Chen, Z.-J. Yang, and Q.-Q. Wang, “Plasmonic interferences and optical modulations in dark-bringt-dark plasmon resonators,” Appl. Phys. Lett. 96, 043113 (2010).
[CrossRef]

Zhang, S.

Zhang, W. L.

. R. Singh, C. Rockstuhl, F. Lederer, and W. L. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

Zhang, X.

. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

Zhang, Z.-S.

. X.-R. Su, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, C.-C. Chen, Z.-J. Yang, and Q.-Q. Wang, “Plasmonic interferences and optical modulations in dark-bringt-dark plasmon resonators,” Appl. Phys. Lett. 96, 043113 (2010).
[CrossRef]

Zheludev, N. I.

. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009).
[CrossRef]

. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

Am. J. Phys. (1)

. C. L. G. Alzer, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

. X.-R. Su, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, C.-C. Chen, Z.-J. Yang, and Q.-Q. Wang, “Plasmonic interferences and optical modulations in dark-bringt-dark plasmon resonators,” Appl. Phys. Lett. 96, 043113 (2010).
[CrossRef]

. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009).
[CrossRef]

. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983 (2008).
[CrossRef] [PubMed]

Nature (London) (1)

. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomicgas,” Nature (London) 397, 594 (1999).
[CrossRef]

Nature Mater. (2)

. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009).
[CrossRef]

. S. A. Maier, “The benefits of darkness,” Nature Mater. 8, 699 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (3)

. T. Opatrný and D.-G. Welsch, “Coupled cavities for enhancing the cross-phase-modulation in electromagnetically induced transparency,” Phys. Rev. A 64, 023805 (2001).
[CrossRef]

. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005).
[CrossRef]

Phys. Rev. B (3)

. T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008).
[CrossRef]

. R. Singh, C. Rockstuhl, F. Lederer, and W. L. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009).
[CrossRef]

. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009).
[CrossRef]

Phys. Rev. Lett. (8)

. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053901 (2009).
[CrossRef] [PubMed]

. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[CrossRef] [PubMed]

. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
[CrossRef] [PubMed]

. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991).
[CrossRef] [PubMed]

. M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232 (2000).
[CrossRef] [PubMed]

. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611 (1999).
[CrossRef]

Phys. Today (1)

. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Science (3)

. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892 (2006).
[CrossRef] [PubMed]

. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003).
[CrossRef] [PubMed]

. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550 (2009).
[CrossRef] [PubMed]

Other (2)

. H. Xu, and B. S. Ham, “Plasmon-induced photonic switching in a metamaterial,” arXiv:0905.3102v4 [quant-ph].

. Y. Lu, H. Xu, N. T. Tung, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Role of magnetic plasmon resonance in plasmonic electromagnetically-induced transparency,” arXiv:0906.4029v4 [cond-mat.mtrl-sci].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Three-dimensional and (b) two-dimensional views of the unit cell. The geometric parameters are w = 80 nm, d = 100 nm, l 1 = 346 nm, l 2 = 790 nm, and s = 0. The vertical distance between the upper gold strip and the lower pair of gold strips is denoted by h and the thickness t of each strip is 40 nm. The periodicity is 870 nm in both the x and y directions. The incident plane waves is irradiated along the z direction, and its electric component, E, is parallel to the x direction.

Fig. 2.
Fig. 2.

(color online) (a) Transmission and (b) absorption spectra with various vertical distances h. The black curves in (a) and (b) are obtained with the same parameters as in Fig. 1 (h = 70 nm), except l 2 = 315 nm.

Fig. 3.
Fig. 3.

(a) Schematics for the incident plane wave on the lower pair of gold strips (l2 = 790 nm), in which the wave is parallel to the strips and its electric field along the x direction. The arrow is an Ey probe placed 10 nm away from the center of the end facet. (b) Spectral response of the Ey probe.

Fig. 4.
Fig. 4.

(a) The z-component distribution of the magnetic field at a frequency of plasmonic EIT with h = 70 nm, where the phase is 150°. (b) The y-component distribution of the electric field at the same frequency, but with a phase of 60°.

Metrics