Abstract

We describe an operating regime for passively mode-locked quantum dot diode laser where the output consists of a train of dark pulses, i.e., intensity dips on a continuous background. We show that a dark pulse train is a solution to the master equation for mode-locked lasers. Using simulations, we study stability of the dark pulses and show they are consistent with the experimental results.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, Ultrafast Optics (Wiley, 2009).
  2. J.-C. Diels, and W. Rudolp, Ultrashort Laser Pulse Phenomena (Academic Press, 2006) 2nd ed.
  3. S. Mukamel, Principles of Nonlinear Optical Spectroscopy, (Oxford University Press, 1995).
  4. S. T. Cundiff, “Coherent spectroscopy of semiconductors,” Opt. Express 16(7), 4639–4664 (2008).
    [CrossRef] [PubMed]
  5. C. Dorrer, “High-speed measurements for optical telecommunication systems,” IEEE J. Sel. Top. Quantum Electron. 12(4), 843–858 (2006).
    [CrossRef]
  6. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
    [CrossRef]
  7. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
    [CrossRef]
  8. Y. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998).
    [CrossRef]
  9. M. Nakazawa and K. Suzuki, “Generation of a pseudorandom dark soliton data train and its coherent detection by one-bit-shifting with a mach-zehnder interferometer,” Electron. Lett. 31(13), 1084–1085 (1995).
    [CrossRef]
  10. D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100ghz dark soliton generation and propagation using a dispersion decreasing fiber,” Electron. Lett. 30(16), 1326–1327 (1994).
    [CrossRef]
  11. O. G. Okhotnikov and F. M. Araujo, “Pulse generation through optical switching in phase driven loop mirror,” Electron. Lett. 31(25), 2197–2198 (1995).
    [CrossRef]
  12. A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61(21), 2445–2448 (1988).
    [CrossRef] [PubMed]
  13. M. Haelterman and P. Emplit, “Optical dark soliton trains generated by passive spectral filtering technique,” Electron. Lett. 29(4), 356–357 (1993).
    [CrossRef]
  14. P. Emplit, M. Haelterman, R. Kashyap, and M. DeLathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9(8), 1122–1124 (1997).
    [CrossRef]
  15. D. M. Pataca, M. L. Rocha, R. Kashyap, and K. Smith, “Bright and dark pulse generation in an optically modelocked fiber laser at 1.3 μm,” Electron. Lett. 31(1), 35–36 (1995).
    [CrossRef]
  16. M. Kauer, J. R. A. Cleaver, J. J. Baumberg, and A. P. Heberle, “Femtosecond dynamics in semiconductor lasers: Dark pulse formation,” Appl. Phys. Lett. 72(13), 1626–1628 (1998).
    [CrossRef]
  17. J. Zimmermann, S. T. Cundiff, G. von Plessen, J. Feldmann, M. Arzberger, G. Bohm, M. C. Amann, and G. Abstreiter, “Dark pulse formation in a quantum-dot laser,” Appl. Phys. Lett. 79(1), 18–20 (2001).
    [CrossRef]
  18. H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
    [CrossRef]
  19. H. A. Haus, “Theory of mode-locking with a fast saturable absorber,” J. Appl. Phys. 46(7), 3049–3058 (1975).
    [CrossRef]
  20. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
    [CrossRef]
  21. M. van der Poel and J. M. Hvam, “Ultrafast dynamics of quantum-dot semiconductor optical amplifiers,” J. Mater. Sci. Mater. Electron. 18(S1), 51–55 (2007).
    [CrossRef]
  22. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996).
    [CrossRef]
  23. A. E. Siegman, Lasers (University Science Books, 1986)
  24. J.-C. Diels, and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd edition, (Academic Press, 2006)
  25. H. A. Haus, “Parameter ranges for CW passive mode-locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976).
    [CrossRef]
  26. F. X. Kärtner, J. A. D. Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What's the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
    [CrossRef]
  27. K. L. Silverman, R. P. Mirin, S. T. Cundiff, and A. G. Norman, “Direct measurement of polarization resolved transition dipole moment in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 82(25), 4552–4554 (2003).
    [CrossRef]
  28. T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27(7), 482–484 (2002).
    [CrossRef]

2009 (2)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[CrossRef]

2008 (1)

2007 (2)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

M. van der Poel and J. M. Hvam, “Ultrafast dynamics of quantum-dot semiconductor optical amplifiers,” J. Mater. Sci. Mater. Electron. 18(S1), 51–55 (2007).
[CrossRef]

2006 (1)

C. Dorrer, “High-speed measurements for optical telecommunication systems,” IEEE J. Sel. Top. Quantum Electron. 12(4), 843–858 (2006).
[CrossRef]

2003 (2)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

K. L. Silverman, R. P. Mirin, S. T. Cundiff, and A. G. Norman, “Direct measurement of polarization resolved transition dipole moment in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 82(25), 4552–4554 (2003).
[CrossRef]

2002 (1)

2001 (1)

J. Zimmermann, S. T. Cundiff, G. von Plessen, J. Feldmann, M. Arzberger, G. Bohm, M. C. Amann, and G. Abstreiter, “Dark pulse formation in a quantum-dot laser,” Appl. Phys. Lett. 79(1), 18–20 (2001).
[CrossRef]

1998 (3)

F. X. Kärtner, J. A. D. Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What's the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

Y. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998).
[CrossRef]

M. Kauer, J. R. A. Cleaver, J. J. Baumberg, and A. P. Heberle, “Femtosecond dynamics in semiconductor lasers: Dark pulse formation,” Appl. Phys. Lett. 72(13), 1626–1628 (1998).
[CrossRef]

1997 (1)

P. Emplit, M. Haelterman, R. Kashyap, and M. DeLathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9(8), 1122–1124 (1997).
[CrossRef]

1996 (1)

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996).
[CrossRef]

1995 (3)

D. M. Pataca, M. L. Rocha, R. Kashyap, and K. Smith, “Bright and dark pulse generation in an optically modelocked fiber laser at 1.3 μm,” Electron. Lett. 31(1), 35–36 (1995).
[CrossRef]

M. Nakazawa and K. Suzuki, “Generation of a pseudorandom dark soliton data train and its coherent detection by one-bit-shifting with a mach-zehnder interferometer,” Electron. Lett. 31(13), 1084–1085 (1995).
[CrossRef]

O. G. Okhotnikov and F. M. Araujo, “Pulse generation through optical switching in phase driven loop mirror,” Electron. Lett. 31(25), 2197–2198 (1995).
[CrossRef]

1994 (1)

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100ghz dark soliton generation and propagation using a dispersion decreasing fiber,” Electron. Lett. 30(16), 1326–1327 (1994).
[CrossRef]

1993 (1)

M. Haelterman and P. Emplit, “Optical dark soliton trains generated by passive spectral filtering technique,” Electron. Lett. 29(4), 356–357 (1993).
[CrossRef]

1988 (1)

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61(21), 2445–2448 (1988).
[CrossRef] [PubMed]

1976 (1)

H. A. Haus, “Parameter ranges for CW passive mode-locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976).
[CrossRef]

1975 (1)

H. A. Haus, “Theory of mode-locking with a fast saturable absorber,” J. Appl. Phys. 46(7), 3049–3058 (1975).
[CrossRef]

Abstreiter, G.

J. Zimmermann, S. T. Cundiff, G. von Plessen, J. Feldmann, M. Arzberger, G. Bohm, M. C. Amann, and G. Abstreiter, “Dark pulse formation in a quantum-dot laser,” Appl. Phys. Lett. 79(1), 18–20 (2001).
[CrossRef]

Amann, M. C.

J. Zimmermann, S. T. Cundiff, G. von Plessen, J. Feldmann, M. Arzberger, G. Bohm, M. C. Amann, and G. Abstreiter, “Dark pulse formation in a quantum-dot laser,” Appl. Phys. Lett. 79(1), 18–20 (2001).
[CrossRef]

Araujo, F. M.

O. G. Okhotnikov and F. M. Araujo, “Pulse generation through optical switching in phase driven loop mirror,” Electron. Lett. 31(25), 2197–2198 (1995).
[CrossRef]

Arzberger, M.

J. Zimmermann, S. T. Cundiff, G. von Plessen, J. Feldmann, M. Arzberger, G. Bohm, M. C. Amann, and G. Abstreiter, “Dark pulse formation in a quantum-dot laser,” Appl. Phys. Lett. 79(1), 18–20 (2001).
[CrossRef]

Au, J. A. D.

F. X. Kärtner, J. A. D. Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What's the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

Baumberg, J. J.

M. Kauer, J. R. A. Cleaver, J. J. Baumberg, and A. P. Heberle, “Femtosecond dynamics in semiconductor lasers: Dark pulse formation,” Appl. Phys. Lett. 72(13), 1626–1628 (1998).
[CrossRef]

Bohm, G.

J. Zimmermann, S. T. Cundiff, G. von Plessen, J. Feldmann, M. Arzberger, G. Bohm, M. C. Amann, and G. Abstreiter, “Dark pulse formation in a quantum-dot laser,” Appl. Phys. Lett. 79(1), 18–20 (2001).
[CrossRef]

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Chamberlin, R. P.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100ghz dark soliton generation and propagation using a dispersion decreasing fiber,” Electron. Lett. 30(16), 1326–1327 (1994).
[CrossRef]

Cleaver, J. R. A.

M. Kauer, J. R. A. Cleaver, J. J. Baumberg, and A. P. Heberle, “Femtosecond dynamics in semiconductor lasers: Dark pulse formation,” Appl. Phys. Lett. 72(13), 1626–1628 (1998).
[CrossRef]

Coen, S.

Cundiff, S. T.

S. T. Cundiff, “Coherent spectroscopy of semiconductors,” Opt. Express 16(7), 4639–4664 (2008).
[CrossRef] [PubMed]

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

K. L. Silverman, R. P. Mirin, S. T. Cundiff, and A. G. Norman, “Direct measurement of polarization resolved transition dipole moment in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 82(25), 4552–4554 (2003).
[CrossRef]

J. Zimmermann, S. T. Cundiff, G. von Plessen, J. Feldmann, M. Arzberger, G. Bohm, M. C. Amann, and G. Abstreiter, “Dark pulse formation in a quantum-dot laser,” Appl. Phys. Lett. 79(1), 18–20 (2001).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996).
[CrossRef]

Cunningham, J. E.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996).
[CrossRef]

DeLathouwer, M.

P. Emplit, M. Haelterman, R. Kashyap, and M. DeLathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9(8), 1122–1124 (1997).
[CrossRef]

Dong, L.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100ghz dark soliton generation and propagation using a dispersion decreasing fiber,” Electron. Lett. 30(16), 1326–1327 (1994).
[CrossRef]

Dorrer, C.

C. Dorrer, “High-speed measurements for optical telecommunication systems,” IEEE J. Sel. Top. Quantum Electron. 12(4), 843–858 (2006).
[CrossRef]

Emplit, P.

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27(7), 482–484 (2002).
[CrossRef]

P. Emplit, M. Haelterman, R. Kashyap, and M. DeLathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9(8), 1122–1124 (1997).
[CrossRef]

M. Haelterman and P. Emplit, “Optical dark soliton trains generated by passive spectral filtering technique,” Electron. Lett. 29(4), 356–357 (1993).
[CrossRef]

Feldmann, J.

J. Zimmermann, S. T. Cundiff, G. von Plessen, J. Feldmann, M. Arzberger, G. Bohm, M. C. Amann, and G. Abstreiter, “Dark pulse formation in a quantum-dot laser,” Appl. Phys. Lett. 79(1), 18–20 (2001).
[CrossRef]

Haelterman, M.

T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27(7), 482–484 (2002).
[CrossRef]

P. Emplit, M. Haelterman, R. Kashyap, and M. DeLathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9(8), 1122–1124 (1997).
[CrossRef]

M. Haelterman and P. Emplit, “Optical dark soliton trains generated by passive spectral filtering technique,” Electron. Lett. 29(4), 356–357 (1993).
[CrossRef]

Haus, H. A.

H. A. Haus, “Parameter ranges for CW passive mode-locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976).
[CrossRef]

H. A. Haus, “Theory of mode-locking with a fast saturable absorber,” J. Appl. Phys. 46(7), 3049–3058 (1975).
[CrossRef]

Hawkins, R. J.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61(21), 2445–2448 (1988).
[CrossRef] [PubMed]

Heberle, A. P.

M. Kauer, J. R. A. Cleaver, J. J. Baumberg, and A. P. Heberle, “Femtosecond dynamics in semiconductor lasers: Dark pulse formation,” Appl. Phys. Lett. 72(13), 1626–1628 (1998).
[CrossRef]

Heritage, J. P.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61(21), 2445–2448 (1988).
[CrossRef] [PubMed]

Hvam, J. M.

M. van der Poel and J. M. Hvam, “Ultrafast dynamics of quantum-dot semiconductor optical amplifiers,” J. Mater. Sci. Mater. Electron. 18(S1), 51–55 (2007).
[CrossRef]

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[CrossRef]

Jan, W. Y.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996).
[CrossRef]

Kärtner, F. X.

F. X. Kärtner, J. A. D. Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What's the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

Kashyap, R.

P. Emplit, M. Haelterman, R. Kashyap, and M. DeLathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9(8), 1122–1124 (1997).
[CrossRef]

D. M. Pataca, M. L. Rocha, R. Kashyap, and K. Smith, “Bright and dark pulse generation in an optically modelocked fiber laser at 1.3 μm,” Electron. Lett. 31(1), 35–36 (1995).
[CrossRef]

Kauer, M.

M. Kauer, J. R. A. Cleaver, J. J. Baumberg, and A. P. Heberle, “Femtosecond dynamics in semiconductor lasers: Dark pulse formation,” Appl. Phys. Lett. 72(13), 1626–1628 (1998).
[CrossRef]

Keller, U.

F. X. Kärtner, J. A. D. Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What's the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

Kirschner, E. M.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61(21), 2445–2448 (1988).
[CrossRef] [PubMed]

Kivshar, Y.

Y. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998).
[CrossRef]

Knox, W. H.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996).
[CrossRef]

Krausz, F.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[CrossRef]

Leaird, D. E.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61(21), 2445–2448 (1988).
[CrossRef] [PubMed]

Luther-Davies, B.

Y. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998).
[CrossRef]

Mirin, R. P.

K. L. Silverman, R. P. Mirin, S. T. Cundiff, and A. G. Norman, “Direct measurement of polarization resolved transition dipole moment in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 82(25), 4552–4554 (2003).
[CrossRef]

Nakazawa, M.

M. Nakazawa and K. Suzuki, “Generation of a pseudorandom dark soliton data train and its coherent detection by one-bit-shifting with a mach-zehnder interferometer,” Electron. Lett. 31(13), 1084–1085 (1995).
[CrossRef]

Norman, A. G.

K. L. Silverman, R. P. Mirin, S. T. Cundiff, and A. G. Norman, “Direct measurement of polarization resolved transition dipole moment in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 82(25), 4552–4554 (2003).
[CrossRef]

Okhotnikov, O. G.

O. G. Okhotnikov and F. M. Araujo, “Pulse generation through optical switching in phase driven loop mirror,” Electron. Lett. 31(25), 2197–2198 (1995).
[CrossRef]

Pataca, D. M.

D. M. Pataca, M. L. Rocha, R. Kashyap, and K. Smith, “Bright and dark pulse generation in an optically modelocked fiber laser at 1.3 μm,” Electron. Lett. 31(1), 35–36 (1995).
[CrossRef]

Payne, D. N.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100ghz dark soliton generation and propagation using a dispersion decreasing fiber,” Electron. Lett. 30(16), 1326–1327 (1994).
[CrossRef]

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Richardson, D. J.

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100ghz dark soliton generation and propagation using a dispersion decreasing fiber,” Electron. Lett. 30(16), 1326–1327 (1994).
[CrossRef]

Rocha, M. L.

D. M. Pataca, M. L. Rocha, R. Kashyap, and K. Smith, “Bright and dark pulse generation in an optically modelocked fiber laser at 1.3 μm,” Electron. Lett. 31(1), 35–36 (1995).
[CrossRef]

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Silverman, K. L.

K. L. Silverman, R. P. Mirin, S. T. Cundiff, and A. G. Norman, “Direct measurement of polarization resolved transition dipole moment in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 82(25), 4552–4554 (2003).
[CrossRef]

Smith, K.

D. M. Pataca, M. L. Rocha, R. Kashyap, and K. Smith, “Bright and dark pulse generation in an optically modelocked fiber laser at 1.3 μm,” Electron. Lett. 31(1), 35–36 (1995).
[CrossRef]

Suzuki, K.

M. Nakazawa and K. Suzuki, “Generation of a pseudorandom dark soliton data train and its coherent detection by one-bit-shifting with a mach-zehnder interferometer,” Electron. Lett. 31(13), 1084–1085 (1995).
[CrossRef]

Sylvestre, T.

Tang, D. Y.

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[CrossRef]

Thurston, R. N.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61(21), 2445–2448 (1988).
[CrossRef] [PubMed]

Tomlinson, W. J.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61(21), 2445–2448 (1988).
[CrossRef] [PubMed]

Tsuda, S.

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996).
[CrossRef]

van der Poel, M.

M. van der Poel and J. M. Hvam, “Ultrafast dynamics of quantum-dot semiconductor optical amplifiers,” J. Mater. Sci. Mater. Electron. 18(S1), 51–55 (2007).
[CrossRef]

von Plessen, G.

J. Zimmermann, S. T. Cundiff, G. von Plessen, J. Feldmann, M. Arzberger, G. Bohm, M. C. Amann, and G. Abstreiter, “Dark pulse formation in a quantum-dot laser,” Appl. Phys. Lett. 79(1), 18–20 (2001).
[CrossRef]

Weiner, A. M.

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61(21), 2445–2448 (1988).
[CrossRef] [PubMed]

Wu, X.

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[CrossRef]

Ye, J.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

Zhang, H.

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[CrossRef]

Zhao, L. M.

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[CrossRef]

Zimmermann, J.

J. Zimmermann, S. T. Cundiff, G. von Plessen, J. Feldmann, M. Arzberger, G. Bohm, M. C. Amann, and G. Abstreiter, “Dark pulse formation in a quantum-dot laser,” Appl. Phys. Lett. 79(1), 18–20 (2001).
[CrossRef]

Appl. Phys. Lett. (3)

M. Kauer, J. R. A. Cleaver, J. J. Baumberg, and A. P. Heberle, “Femtosecond dynamics in semiconductor lasers: Dark pulse formation,” Appl. Phys. Lett. 72(13), 1626–1628 (1998).
[CrossRef]

J. Zimmermann, S. T. Cundiff, G. von Plessen, J. Feldmann, M. Arzberger, G. Bohm, M. C. Amann, and G. Abstreiter, “Dark pulse formation in a quantum-dot laser,” Appl. Phys. Lett. 79(1), 18–20 (2001).
[CrossRef]

K. L. Silverman, R. P. Mirin, S. T. Cundiff, and A. G. Norman, “Direct measurement of polarization resolved transition dipole moment in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 82(25), 4552–4554 (2003).
[CrossRef]

Electron. Lett. (5)

D. M. Pataca, M. L. Rocha, R. Kashyap, and K. Smith, “Bright and dark pulse generation in an optically modelocked fiber laser at 1.3 μm,” Electron. Lett. 31(1), 35–36 (1995).
[CrossRef]

M. Nakazawa and K. Suzuki, “Generation of a pseudorandom dark soliton data train and its coherent detection by one-bit-shifting with a mach-zehnder interferometer,” Electron. Lett. 31(13), 1084–1085 (1995).
[CrossRef]

D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100ghz dark soliton generation and propagation using a dispersion decreasing fiber,” Electron. Lett. 30(16), 1326–1327 (1994).
[CrossRef]

O. G. Okhotnikov and F. M. Araujo, “Pulse generation through optical switching in phase driven loop mirror,” Electron. Lett. 31(25), 2197–2198 (1995).
[CrossRef]

M. Haelterman and P. Emplit, “Optical dark soliton trains generated by passive spectral filtering technique,” Electron. Lett. 29(4), 356–357 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. A. Haus, “Parameter ranges for CW passive mode-locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

F. X. Kärtner, J. A. D. Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What's the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

C. Dorrer, “High-speed measurements for optical telecommunication systems,” IEEE J. Sel. Top. Quantum Electron. 12(4), 843–858 (2006).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Emplit, M. Haelterman, R. Kashyap, and M. DeLathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9(8), 1122–1124 (1997).
[CrossRef]

J. Appl. Phys. (1)

H. A. Haus, “Theory of mode-locking with a fast saturable absorber,” J. Appl. Phys. 46(7), 3049–3058 (1975).
[CrossRef]

J. Mater. Sci. Mater. Electron. (1)

M. van der Poel and J. M. Hvam, “Ultrafast dynamics of quantum-dot semiconductor optical amplifiers,” J. Mater. Sci. Mater. Electron. 18(S1), 51–55 (2007).
[CrossRef]

Nat. Photonics (1)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rep. (1)

Y. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998).
[CrossRef]

Phys. Rev. A (1)

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61(21), 2445–2448 (1988).
[CrossRef] [PubMed]

Rev. Mod. Phys. (2)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[CrossRef]

Other (5)

A. E. Siegman, Lasers (University Science Books, 1986)

J.-C. Diels, and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd edition, (Academic Press, 2006)

A. M. Weiner, Ultrafast Optics (Wiley, 2009).

J.-C. Diels, and W. Rudolp, Ultrashort Laser Pulse Phenomena (Academic Press, 2006) 2nd ed.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy, (Oxford University Press, 1995).

Supplementary Material (1)

» Media 1: MOV (558 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of external cavity diode laser (R-SBR: resonant saturable Bragg reflector).

Fig. 2
Fig. 2

Optical characteristics of the laser. (a) Electroluminescence from the QDs gain. (b) Light-current characteristics.

Fig. 3
Fig. 3

Characterization of the saturable Bragg reflector. (a) Low intensity reflection spectrum, (b) reflectivity vs. fluence., (c) temporal response, the black curve is a 10 ps single exponential decay fit to the measured data.

Fig. 4
Fig. 4

Output train of dark pulses detected by a photodiode. Red dashed line shows fit to a single pulse for pulsewidth determination .

Fig. 5
Fig. 5

RF power spectrum of photodiode output at a 110 mA bias current for a wide span (left) and zooming in the on the fundamental (right, resolution bandwidth is 2kHz).

Fig. 6
Fig. 6

Optical spectrum at bias current of 110 mA. Bandwidth is about 0.5 nm (resolution bandwidth is 0.07 nm).

Fig. 7
Fig. 7

Dark pulse width and modulation depth variation with lasing wavelength.

Fig. 8
Fig. 8

Saturation of the absorption and (a) single component gain and (b) two component gain. The power is in units of the absorber’s saturation power, Iq . and the gain and loss are in units of the nonsaturable loss, l 0. The lower panel in (a) and (b) show the net gain (gain minus loss). The points where the net gain is zero are stationary and labeled.

Fig. 9
Fig. 9

Evolution of initial bright pulse seed into a steady state solution showing a gray pulse, the stable dark pulse width is 36 ps and the modulation depth is 84%.

Fig. 10
Fig. 10

(Media 1) Animation of the evolution shown in Fig. 9.

Fig. 11
Fig. 11

Phase space maps showing stable solution as a function of low, Igl , and high, Igh , saturation powers for the gain, normalized to the absorption saturation power, Iq . The gray scale bar indicates the modulation depth of the dark pulse. In (a), the star indicates the best estimate of the operating point (parameters listed in Table 1) for the experimental conditions when the laser produces dark pulses. The experimental conditions, an increase of slow gain by 4%, where the laser produces CW output is shown in (b), again the star indicates the estimated operating point.

Fig. 12
Fig. 12

Pump-probe measurement showing the recovery of the QD amplifier gain.

Tables (1)

Tables Icon

Table 1 Parameter estimates for operating conditions of laser

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ l o + q 0 1 + | u | 2 / I q g 0 1 + | u | 2 / I g ( 1 + 1 ω g 2 d 2 d t 2 ) 1 ω f 2 d 2 d t 2 ] u = 0
[ l 0 + q 0 ( 1 | u | 2 I q ) g 0 ( 1 | u | 2 I g ) 1 ω f 2 d 2 d t 2 ] u = 0.
T R T u ( T , t ) = ( g + D g . f 2 t 2 l 0 q 0 1 + | u | 2 / P A ) u ( T , t )
g ( t ) = g n 1 + P / I g + g l 1 + | u | 2 / I g l + g h 1 + | u | 2 / I g h

Metrics