Abstract

We report experimental evidence of dispersive waves with enhanced redshift generated through soliton collisions in a photonic crystal fiber with two zero-dispersion wavelengths. Experiments are performed to study both controlled collisions under twin-pulse excitation, as well as spontaneous collisions arising from noise-induced supercontinuum generation. Experimental results for the spectral and statistical properties are in good agreement with numerical simulations and are shown to be associated with extreme-value like distributions with long tails.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
    [CrossRef] [PubMed]
  2. K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-6-1045 .
    [CrossRef] [PubMed]
  3. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, “Enhanced bandwidth of supercontinuum generated in microstructured fibers,” Opt. Express 12(15), 3471–3480 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-15-3471 .
    [CrossRef] [PubMed]
  4. A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express 15(18), 11553–11563 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11553 .
    [CrossRef] [PubMed]
  5. A. Kudlinski, G. Bouwmans, M. Douay, M. Taki, and A. Mussot, “Dispersion-engineered photonic crystal fibers for CW-pumped supercontinuum sources,” J. Lightwave Technol. 27(11), 1556–1564 (2009).
    [CrossRef]
  6. M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35(5), 658–660 (2010).
    [CrossRef] [PubMed]
  7. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [CrossRef] [PubMed]
  8. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  9. F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14(21), 9844–9853 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-21-9844 .
    [CrossRef] [PubMed]
  10. C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue waves energy statistics in supercontinuum generation,” Electron. Lett. 45(4), 217–219 (2009).
    [CrossRef]
  11. M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue-wave-like characteristics in femtosecond supercontinuum generation,” Opt. Lett. 34(16), 2468–2470 (2009).
    [CrossRef] [PubMed]

2010

2009

2007

2006

2004

2003

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[CrossRef] [PubMed]

Andersen, T.

Beaugeois, M.

Bolger, J.

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue waves energy statistics in supercontinuum generation,” Electron. Lett. 45(4), 217–219 (2009).
[CrossRef]

Bouazaoui, M.

Bouwmans, G.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Dias, F.

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue waves energy statistics in supercontinuum generation,” Electron. Lett. 45(4), 217–219 (2009).
[CrossRef]

Douay, M.

Dudley, J. M.

M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35(5), 658–660 (2010).
[CrossRef] [PubMed]

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue waves energy statistics in supercontinuum generation,” Electron. Lett. 45(4), 217–219 (2009).
[CrossRef]

M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue-wave-like characteristics in femtosecond supercontinuum generation,” Opt. Lett. 34(16), 2468–2470 (2009).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Eggleton, B. J.

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue waves energy statistics in supercontinuum generation,” Electron. Lett. 45(4), 217–219 (2009).
[CrossRef]

Erkintalo, M.

Genty, G.

Hansen, K.

Hilligsøe, K. M.

Jalali, B.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Kaivola, M.

Keiding, S.

Knight, J. C.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Kristiansen, R.

Kudlinski, A.

Lafargue, C.

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue waves energy statistics in supercontinuum generation,” Electron. Lett. 45(4), 217–219 (2009).
[CrossRef]

Larsen, J.

Lehtonen, M.

Luan, F.

Ludvigsen, H.

Mølmer, K.

Mussot, A.

Nielsen, C.

Paulsen, H.

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Russell, P. St. J.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[CrossRef] [PubMed]

Skryabin, D. V.

Solli, D. R.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Sylvestre, T.

Taki, M.

Yulin, A. V.

Electron. Lett.

C. Lafargue, J. Bolger, G. Genty, F. Dias, J. M. Dudley, and B. J. Eggleton, “Direct detection of optical rogue waves energy statistics in supercontinuum generation,” Electron. Lett. 45(4), 217–219 (2009).
[CrossRef]

J. Lightwave Technol.

Nature

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Science

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301(5640), 1705–1708 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup for controlled soliton collision studies. BS: beamsplitter, VA: variable attenuator, OSA: optical spectrum analyzer.

Fig. 2
Fig. 2

Illustrative simulation results of (a) temporal and (b) spectral evolution to show how a pulse pair injected into a PCF can be used to study collision dynamics. (c) shows details of the temporal intensity profiles at selected distances as shown.

Fig. 3
Fig. 3

For decreasing delay between the interferometer arms as indicated, the top panels show measured (upper) and simulated (lower) spectra at the PCF output. The central panels show the simulated temporal evolution illustrating the soliton crossing trajectories and the different classes of single soliton dispersive wave (SDW) or soliton collision dispersive wave (CDW) generation. The lower panel shows the output spectrograms with the insets in (a)-(c) showing the spectrograms at point of collision. For clarity the amplitude of the DW was increased by a factor of 50 in the time-trajectory plot.

Fig. 4
Fig. 4

Measured (a) and simulated (b) average SC spectra generated by 5 ps pulses at 865 nm. Experimentally recorded (c) and simulated (d) histograms of the time-series when DW components are filtered. The long-pass filter (marked as a dashed line) is placed at a convenient position to allow single-soliton and soliton-collision-induced DW to be distinguished through the statistics. (e) Selected portion of recorded time trace containing 800 shots and showing evidence of a CDW. Insets: histograms in a log-log scale.

Metrics