Abstract

We fabricate graded index (GI) multi-channel polymer optical waveguides comprised of poly methyl methacrylate (PMMA)-poly benzyl methacrylate copolymer for the purpose of achieving high thermal stability in the GI profiles. The waveguides obtained show slightly higher propagation loss (0.033 dB/cm at 850 nm) than doped PMMA based GI-core polymer waveguides we have reported, due to the excess scattering loss inherent to the mixture of copolymer and homo-polymer in the core area. In this paper, we focus on the influence of the excess scattering loss on mode conversion and inter-channel crosstalk. We simulate the behavior of light propagating inside the core with and without the scattering effect. Using the simulation, the excess loss experimentally observed in the copolymer-core waveguide is successfully reproduced, and then, we find that the excess scattering loss of 0.008 dB/cm could increase the inter-channel crosstalk from −30 dB to −23 dB which agrees with the experimentally observed value. Although the simulation of the inter-channel crosstalk was performed only on our GI-core polymer optical waveguides, it is capable of modeling the conventional SI rectangular-core waveguides. Some amount of excess scattering is generally observed in the conventional SI-core waveguides, and thus, the application of this simulation to SI-core waveguides allows a feasible design for high-density alignment of the waveguides.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer waveguide based board level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
    [CrossRef]
  2. X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully embedded board-level optical interconnects from waveguide fabrication to device integration,” J. Lightwave Technol. 26(2), 243–250 (2008).
    [CrossRef]
  3. M. Karppinen, T. Alajoki, A. Tanskanen, K. Kataja, J.-T. Mäkinen, K. Kautio, P. Karioja, M. Immonen, and J. Kivilahti, “Parallel optical interconnect between ceramic BGA packages on FR4 board using embedded waveguides and passive optical alignments,” Proc 56th Electronic Components and Technology Conf, San Diego, CA, 219–225 (2006).
  4. I. Papakonstantinou, D. R. Selviah, R. C. A. Pitwon, and D. Milward, “Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs,” IEEE Trans. Adv. Packag. 31(3), 502–511 (2008).
    [CrossRef]
  5. N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
    [CrossRef]
  6. Y. Takeyoshi and T. Ishigure, “High-density 2 X 4 channel polymer optical waveguide with graded-index circular cores,” J. Lightwave Technol. 27(14), 2852–2861 (2009).
    [CrossRef]
  7. T. Ishigure and Y. Takeyoshi, “Polymer waveguide with 4-channel graded-index circular cores for parallel optical interconnects,” Opt. Express 15(9), 5843–5850 (2007).
    [CrossRef] [PubMed]
  8. M. Sato, T. Ishigure, and Y. Koike, “Thermally stable high-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 18(7), 952–958 (2000).
    [CrossRef]
  9. T. Ono, and T. Ishigure, “Investigation of mode coupling origin in graded index multimode polymer optical fiber and waveguide,” in Proceedings of IEEE Lasers and Electro-Optics Society, (Florida, 2007), pp. 246–247.
  10. T. Ishigure, M Satoh, O Takanashi, E. Nihei, T Nyu, S. Yamazaki, and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
    [CrossRef]
  11. H. H. Hsu, and T. Ishigure, “Graded index core optical polymer parallel waveguide and its crosstalk analysis”, presented at International Conference on Electronics Packaging, Sapporo, Japan, 12–14 May 2010.
  12. T. Ishigure, S. Tanaka, E. Kobayashi, and Y. Koike, “Accurate refractive index profiling in a graded-index plastic optical fiber exceeding gigabit transmission rates,” J. Lightwave Technol. 20(8), 1449–1456 (2002).
    [CrossRef]
  13. Y. Koike and T. Ishigure, ““Bandwidth and transmission distance achieved by POF,” IEICE Transaction on Electronics,” E 82-C, 1553–1561 (1999).
  14. A. W. Snyder and, J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), Chap. 35.

2009

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
[CrossRef]

Y. Takeyoshi and T. Ishigure, “High-density 2 X 4 channel polymer optical waveguide with graded-index circular cores,” J. Lightwave Technol. 27(14), 2852–2861 (2009).
[CrossRef]

2008

X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully embedded board-level optical interconnects from waveguide fabrication to device integration,” J. Lightwave Technol. 26(2), 243–250 (2008).
[CrossRef]

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer waveguide based board level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

I. Papakonstantinou, D. R. Selviah, R. C. A. Pitwon, and D. Milward, “Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs,” IEEE Trans. Adv. Packag. 31(3), 502–511 (2008).
[CrossRef]

2007

2002

2000

1999

Y. Koike and T. Ishigure, ““Bandwidth and transmission distance achieved by POF,” IEICE Transaction on Electronics,” E 82-C, 1553–1561 (1999).

1997

T. Ishigure, M Satoh, O Takanashi, E. Nihei, T Nyu, S. Yamazaki, and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
[CrossRef]

Bamiedakis, N.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
[CrossRef]

Beals, J.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
[CrossRef]

Berger, C.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer waveguide based board level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Beyeler, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer waveguide based board level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Bi, H.

Chen, R. T.

Clapp, T. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
[CrossRef]

Dangel, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer waveguide based board level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

DeGroot, J. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
[CrossRef]

Dellmann, L.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer waveguide based board level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Gmür, M.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer waveguide based board level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Hamelin, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer waveguide based board level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Horst, F.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer waveguide based board level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Ishigure, T.

Jiang, W.

Kobayashi, E.

Koike, Y.

T. Ishigure, S. Tanaka, E. Kobayashi, and Y. Koike, “Accurate refractive index profiling in a graded-index plastic optical fiber exceeding gigabit transmission rates,” J. Lightwave Technol. 20(8), 1449–1456 (2002).
[CrossRef]

M. Sato, T. Ishigure, and Y. Koike, “Thermally stable high-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 18(7), 952–958 (2000).
[CrossRef]

Y. Koike and T. Ishigure, ““Bandwidth and transmission distance achieved by POF,” IEICE Transaction on Electronics,” E 82-C, 1553–1561 (1999).

T. Ishigure, M Satoh, O Takanashi, E. Nihei, T Nyu, S. Yamazaki, and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
[CrossRef]

Lamprecht, T.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer waveguide based board level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Milward, D.

I. Papakonstantinou, D. R. Selviah, R. C. A. Pitwon, and D. Milward, “Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs,” IEEE Trans. Adv. Packag. 31(3), 502–511 (2008).
[CrossRef]

Morf, T.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer waveguide based board level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Nihei, E.

T. Ishigure, M Satoh, O Takanashi, E. Nihei, T Nyu, S. Yamazaki, and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
[CrossRef]

Nyu, T

T. Ishigure, M Satoh, O Takanashi, E. Nihei, T Nyu, S. Yamazaki, and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
[CrossRef]

Offrein, B. J.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer waveguide based board level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Oggioni, S.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer waveguide based board level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Papakonstantinou, I.

I. Papakonstantinou, D. R. Selviah, R. C. A. Pitwon, and D. Milward, “Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs,” IEEE Trans. Adv. Packag. 31(3), 502–511 (2008).
[CrossRef]

Penty, R. V.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
[CrossRef]

Pitwon, R. C. A.

I. Papakonstantinou, D. R. Selviah, R. C. A. Pitwon, and D. Milward, “Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs,” IEEE Trans. Adv. Packag. 31(3), 502–511 (2008).
[CrossRef]

Sato, M.

Satoh, M

T. Ishigure, M Satoh, O Takanashi, E. Nihei, T Nyu, S. Yamazaki, and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
[CrossRef]

Selviah, D. R.

I. Papakonstantinou, D. R. Selviah, R. C. A. Pitwon, and D. Milward, “Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs,” IEEE Trans. Adv. Packag. 31(3), 502–511 (2008).
[CrossRef]

Sprea?co, M.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer waveguide based board level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Takanashi, O

T. Ishigure, M Satoh, O Takanashi, E. Nihei, T Nyu, S. Yamazaki, and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
[CrossRef]

Takeyoshi, Y.

Tanaka, S.

Wang, L.

Wang, X.

White, I. H.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
[CrossRef]

Yamazaki, S.

T. Ishigure, M Satoh, O Takanashi, E. Nihei, T Nyu, S. Yamazaki, and Y. Koike, “Formation of the refractive index profile in the graded index polymer optical fiber for gigabit data transmission,” J. Lightwave Technol. 15(11), 2095–2100 (1997).
[CrossRef]

E

Y. Koike and T. Ishigure, ““Bandwidth and transmission distance achieved by POF,” IEICE Transaction on Electronics,” E 82-C, 1553–1561 (1999).

IEEE Trans. Adv. Packag.

I. Papakonstantinou, D. R. Selviah, R. C. A. Pitwon, and D. Milward, “Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs,” IEEE Trans. Adv. Packag. 31(3), 502–511 (2008).
[CrossRef]

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer waveguide based board level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

J. Lightwave Technol.

J. Quantum Electron.

N. Bamiedakis, J. Beals, R. V. Penty, I. H. White, J. V. DeGroot, and T. V. Clapp, “Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects,” J. Quantum Electron. 45(4), 415–424 (2009).
[CrossRef]

Opt. Express

Other

M. Karppinen, T. Alajoki, A. Tanskanen, K. Kataja, J.-T. Mäkinen, K. Kautio, P. Karioja, M. Immonen, and J. Kivilahti, “Parallel optical interconnect between ceramic BGA packages on FR4 board using embedded waveguides and passive optical alignments,” Proc 56th Electronic Components and Technology Conf, San Diego, CA, 219–225 (2006).

T. Ono, and T. Ishigure, “Investigation of mode coupling origin in graded index multimode polymer optical fiber and waveguide,” in Proceedings of IEEE Lasers and Electro-Optics Society, (Florida, 2007), pp. 246–247.

H. H. Hsu, and T. Ishigure, “Graded index core optical polymer parallel waveguide and its crosstalk analysis”, presented at International Conference on Electronics Packaging, Sapporo, Japan, 12–14 May 2010.

A. W. Snyder and, J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), Chap. 35.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The refractive index profile measured using an interference microscope. The concentric interference fringes show the graded index variation within the core area. (b) Refractive index profile measured on the horizontal line connecting the core centers. The core radius of each core is approximately 50 μm and pitch (from the center to center) is approximately 200 μm.

Fig. 2
Fig. 2

NFP after a 1-m waveguide transmission of a copolymer based optical waveguide under restricted launch condition and offset launch (move horizontally). The offset distance is shown beneath each profile.

Fig. 3
Fig. 3

The middle core of 1-m long copolymer based waveguide was launched for crosstalk measurement. We can observe the ring like pattern in adjacent channels. In this sample, the core radius of each core is approximately 50 μm and pitch (from the center to center) is approximately 200 μm.

Fig. 4
Fig. 4

One ray injects to the channel from (x, y, z) = (30, 0, 0) with 3° of angle to the z axis: (a) without and (b) with scattering effect. The rays penetrate the core-cladding boundary are those refracted rays.

Fig. 5
Fig. 5

The calculated NFP under offset launching conditions (a) without and (b) with scattering effect. The offset distance from left to right is 10, 20, 30 and 40 μm. In this simulation p = 10%, Ns = 5 and θm = 20 is applied. The white circle surround the calculated NFP is the assumed core-cladding boundary.

Fig. 6
Fig. 6

The calculated NFP (a) without and (b) with scattering effect included for a GI multi-channel waveguide. In this simulation, the parameters are identical as single channel case.

Fig. 7
Fig. 7

The scattering probability p dominates the scattering loss and shows the unexpected propagation length dependence.

Fig. 8
Fig. 8

(a) The loss value (in dB/cm) for the center channel. (b) The crosstalk value (in dB) for the right channel and (c) left channel.

Tables (1)

Tables Icon

Table 1 Measurement results of the waveguides

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = n 1 [ 1 2 Δ ( r / a ) g ] 1 / 2
{ d d s [ n ( r ) d r d s ] r n ( r ) ( d φ d s ) 2 = d n ( r ) d r d d s [ n ( r ) d φ d s ] + 2 n ( r ) r d φ d s d r d s = 0 d d s [ n ( r ) d z d s ] = 0
z = β d r [ n 2 ( r ) β 2 l 2 a 2 / r 2 ] 1 / 2
T r e f = 1 ( λ 16 π n 2 3 sin 3 θ t d n 2 ( r ) d r | r = a ) 2
T t u n = exp [ 4 π λ r t p r r a d { β 2 + ( l a / r ) 2 n 2 ( r ) } 1 / 2 d r ]
Δ θ k = ± θ m log ( R )
I k = | Δ θ k | 1 k = 1 n | Δ θ k | 1 I 0 ( 1 T k )

Metrics