Abstract

A meanderline wave retarder is a unique type of frequency-selective-surface (FSS) that enables a change in the state of optical polarization. The principles of operation are very similar to a typical crystalline waveplate, such that the artificially structured meanderline array has both ‘slow’ and ‘fast’ axes that provide a phase offset between two orthogonal wave components. In this paper, we study the behavior and response of multilayered meanderline quarter-wave retarders designed for operation at 10.6 μm wavelength (28.28 THz). It will be shown that meanderline quarter-wave plates with more than a single layer exhibit improved transmission throughput at infrared frequencies due to impedance matching, similar to a multilayer optical film coating. Numerical data, both from simulations and measurements, are presented to validate this claim.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single-layer meanderline phase retarder at infrared,” Opt. Lett. 31(18), 2687–2689 (2006).
    [CrossRef] [PubMed]
  2. J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and Demonstration of an Infrared Meanderline Phase Retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
    [CrossRef]
  3. J. S. Tharp, J. Alda, and G. D. Boreman, “Off-axis behavior of an infrared meander-line waveplate,” Opt. Lett. 32(19), 2852–2854 (2007).
    [CrossRef] [PubMed]
  4. G. P. Nordin and P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5(8), 163–168 (1999).
    [CrossRef] [PubMed]
  5. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36(7), 1566–1572 (1997).
    [CrossRef] [PubMed]
  6. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Subwavelength transmission grating retarders for use at 10.6 μm,” Appl. Opt. 35(31), 6195–6202 (1996).
    [CrossRef] [PubMed]
  7. R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith., Microfab, Microsyst. 5(4), 043007 (2006).
    [CrossRef]
  8. P. C. Deguzman and G. P. Nordin, “Stacked subwavelength gratings as circular polarization filters,” Appl. Opt. 40(31), 5731–5737 (2001).
    [CrossRef]
  9. G. Kang, Q. Tan, X. Wang, and G. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18(2), 1695–1703 (2010).
    [CrossRef] [PubMed]
  10. S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” Sandia National Lab., Albuquerque, NM, Sandia Report SAND2006–6889, (2006).
  11. A. Lompado, E. A. Sornsin, and R. A. Chipman, “HN22 sheet polarizer, an inexpensive infrared retarder,” Appl. Opt. 36(22), 5396–5402 (1997).
    [CrossRef] [PubMed]
  12. R. M. A. Azzam and C. L. Spinu, “Achromatic angle-insensitive infrared quarter-wave retarder based on total internal reflection at the Si-SiO2 interface,” J. Opt. Soc. Am. A 21(10), 2019–2022 (2004).
    [CrossRef]
  13. M. Iwanaga, “Ultracompact waveplates: approach from metamaterials,” Appl. Phys. Lett. 92(15), 153102 (2008).
    [CrossRef]
  14. E. Cojocaru, T. Julea, and F. Nichitiu, “Infrared thin-film totally reflecting quarter-wave retarders,” Appl. Opt. 30(28), 4124–4125 (1991).
    [CrossRef] [PubMed]
  15. E. H. Korte, B. Jordanov, D. Kolev, and D. Tsankov, “Total reflection prisms as achromatic IR retarders,” Appl. Spectrosc. 42(8), 1394–1400 (1988).
    [CrossRef]
  16. J. Liu and R. M. A. Azzam, “Infrared quarter-wave reflection retarders designed with high-spatial-frequency dielectric surface-relief gratings on a gold substrate at oblique incidence,” Appl. Opt. 35(28), 5557–5562 (1996).
    [CrossRef] [PubMed]
  17. V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
    [CrossRef]
  18. E. L. Gieszelmann, S. F. Jacobs, and H. E. Morrow, “Simple quartz birefringent quarter-wave plate for use at 3.39 μm,” J. Opt. Soc. Am. A 59(10), 1381–1383 (1969).
    [CrossRef]
  19. R. C. Sharp, D. P. Resler, D. S. Hobbs, and T. A. Dorschner, “Electrically tunable liquid-crystal wave plate in the infrared,” Opt. Lett. 15(1), 87–89 (1990).
    [CrossRef] [PubMed]
  20. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  21. P. D. Hale and G. W. Day, “Stability of birefringent linear retarders (waveplates),” Appl. Opt. 27(24), 5146–5153 (1988).
    [CrossRef] [PubMed]
  22. H. Kikuta, K. Numata, M. Muto, K. Iwata, H. Toyota, K. Moriwaki, T. Yotuya, and H. Sato, “Polarization imaging camera with form birefringent micro-retarder array,” in Frontiers in Optics, OSA Technical Digest (CD), (2003).
  23. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
    [CrossRef]
  24. C. S. L. Chun, “Microscale waveplates for polarimetric infrared imaging,” Proc. SPIE 5074, 286–297 (2003).
    [CrossRef]
  25. M. W. Kudenov, E. L. Dereniak, L. Pezzaniti, and G. R. Gerhart, “2-cam LWIR imaging Stokes polarimeter,” Proc. SPIE 6972, 69720K (2008).
    [CrossRef]
  26. M. W. Kudenov, J. L. Pezzaniti, and G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
    [CrossRef]
  27. L. Young, L. A. Robinson, and C. A. Hacking, “Meander-line Polarizer,” IEEE Trans. Antenn. Propag. 21(3), 376–378 (1973).
    [CrossRef]
  28. R.-S. Chu and K.-M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antenn. Propag. 35(6), 652–661 (1987).
    [CrossRef]
  29. B. A. Munk, Finite Antenna Arrays and FSS, (Wiley, Hoboken, NJ, 2003).
  30. C. Terret, J. R. Levrel, and K. Mahdjoubi, “Susceptance computation of a meander-line polarizer layer,” IEEE Trans. Antenn. Propag. 32(9), 1007–1011 (1984).
    [CrossRef]
  31. A. K. Bhattacharyya and T. J. Chwalek, “Analysis of multilayer meanderline polarizer,” Int. J. Microwave Millimeter-Wave Comput.-Aided Eng. 7(6), 442–454 (1998).
  32. Z. Knittl, Optics of thin films; an optical multilayer theory, (Wiley, New York, NY, 1976).
    [PubMed]
  33. H. A. Macleod, Thin-film optical filters, (American Elsevier, New York, NY, 1969).
  34. P. A. Rizzi, Microwave Engineering: Passive Circuits, (Prentice-Hall, Upper Saddle River, NJ, 1988).
  35. K. K. Chan, T. W. Ang, T. H. Chao, and T. S. Yeo, “Accurate analysis of meanderline polarizers with finite thicknesses using mode matching,” IEEE Trans. Antenn. Propag. 56(11), 3580–3585 (2008).
    [CrossRef]
  36. E. D. Palik, Handbook of optical constants of solids, vol. III., (Academic, San Diego, CA, 1997).
  37. P. Garrou, “Polymer dielectrics for multichip module packaging,” Proc. IEEE 80(12), 1942–1954 (1992).
    [CrossRef]
  38. W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi 5(5), 1113–1116 (2008) (c).
    [CrossRef]
  39. J. S. Tharp, D. J. Shelton, S. L. Wadsworth, and G. D. Boreman, “Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate,” J. Vac. Sci. Technol. B 26(5), 1821–1823 (2008).
    [CrossRef]
  40. D. Goldstein, Polarized Light 2nd Ed., (Marcel Dekker, New York, NY, 2003).
  41. J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
    [CrossRef]
  42. L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge, New York, NY, 1995).
  43. D. F. Bezuidenhout, K. D. Clarke, and R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155(1), 17–30 (1987).
    [CrossRef]
  44. J. Y. Robic, B. Rolland, J. C. Deutsch, and P. Gallais, “Ion-assisted deposition of yttrium fluoride as a substitute for thorium fluoride: Application to infrared anti-reflection coating on germanium,” Proc. SPIE 2253, 552–558 (1994).
    [CrossRef]
  45. V. K. Arora, “Quantum size effect in thin-wire transport,” Phys. Rev. B 23(10), 5611–5612 (1981).
    [CrossRef]

2010 (1)

2009 (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. W. Kudenov, J. L. Pezzaniti, and G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
[CrossRef]

2008 (5)

M. W. Kudenov, E. L. Dereniak, L. Pezzaniti, and G. R. Gerhart, “2-cam LWIR imaging Stokes polarimeter,” Proc. SPIE 6972, 69720K (2008).
[CrossRef]

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi 5(5), 1113–1116 (2008) (c).
[CrossRef]

J. S. Tharp, D. J. Shelton, S. L. Wadsworth, and G. D. Boreman, “Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate,” J. Vac. Sci. Technol. B 26(5), 1821–1823 (2008).
[CrossRef]

K. K. Chan, T. W. Ang, T. H. Chao, and T. S. Yeo, “Accurate analysis of meanderline polarizers with finite thicknesses using mode matching,” IEEE Trans. Antenn. Propag. 56(11), 3580–3585 (2008).
[CrossRef]

M. Iwanaga, “Ultracompact waveplates: approach from metamaterials,” Appl. Phys. Lett. 92(15), 153102 (2008).
[CrossRef]

2007 (2)

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and Demonstration of an Infrared Meanderline Phase Retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

J. S. Tharp, J. Alda, and G. D. Boreman, “Off-axis behavior of an infrared meander-line waveplate,” Opt. Lett. 32(19), 2852–2854 (2007).
[CrossRef] [PubMed]

2006 (2)

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith., Microfab, Microsyst. 5(4), 043007 (2006).
[CrossRef]

J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single-layer meanderline phase retarder at infrared,” Opt. Lett. 31(18), 2687–2689 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[CrossRef]

C. S. L. Chun, “Microscale waveplates for polarimetric infrared imaging,” Proc. SPIE 5074, 286–297 (2003).
[CrossRef]

2001 (1)

1999 (2)

1998 (1)

A. K. Bhattacharyya and T. J. Chwalek, “Analysis of multilayer meanderline polarizer,” Int. J. Microwave Millimeter-Wave Comput.-Aided Eng. 7(6), 442–454 (1998).

1997 (2)

1996 (2)

1994 (2)

V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
[CrossRef]

J. Y. Robic, B. Rolland, J. C. Deutsch, and P. Gallais, “Ion-assisted deposition of yttrium fluoride as a substitute for thorium fluoride: Application to infrared anti-reflection coating on germanium,” Proc. SPIE 2253, 552–558 (1994).
[CrossRef]

1992 (1)

P. Garrou, “Polymer dielectrics for multichip module packaging,” Proc. IEEE 80(12), 1942–1954 (1992).
[CrossRef]

1991 (1)

1990 (1)

1988 (2)

1987 (2)

R.-S. Chu and K.-M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antenn. Propag. 35(6), 652–661 (1987).
[CrossRef]

D. F. Bezuidenhout, K. D. Clarke, and R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155(1), 17–30 (1987).
[CrossRef]

1984 (1)

C. Terret, J. R. Levrel, and K. Mahdjoubi, “Susceptance computation of a meander-line polarizer layer,” IEEE Trans. Antenn. Propag. 32(9), 1007–1011 (1984).
[CrossRef]

1981 (1)

V. K. Arora, “Quantum size effect in thin-wire transport,” Phys. Rev. B 23(10), 5611–5612 (1981).
[CrossRef]

1973 (1)

L. Young, L. A. Robinson, and C. A. Hacking, “Meander-line Polarizer,” IEEE Trans. Antenn. Propag. 21(3), 376–378 (1973).
[CrossRef]

1969 (1)

E. L. Gieszelmann, S. F. Jacobs, and H. E. Morrow, “Simple quartz birefringent quarter-wave plate for use at 3.39 μm,” J. Opt. Soc. Am. A 59(10), 1381–1383 (1969).
[CrossRef]

Alda, J.

Alford, C. R.

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith., Microfab, Microsyst. 5(4), 043007 (2006).
[CrossRef]

Ang, T. W.

K. K. Chan, T. W. Ang, T. H. Chao, and T. S. Yeo, “Accurate analysis of meanderline polarizers with finite thicknesses using mode matching,” IEEE Trans. Antenn. Propag. 56(11), 3580–3585 (2008).
[CrossRef]

Arora, V. K.

V. K. Arora, “Quantum size effect in thin-wire transport,” Phys. Rev. B 23(10), 5611–5612 (1981).
[CrossRef]

Azzam, R. M. A.

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Bezuidenhout, D. F.

D. F. Bezuidenhout, K. D. Clarke, and R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155(1), 17–30 (1987).
[CrossRef]

Bhattacharyya, A. K.

A. K. Bhattacharyya and T. J. Chwalek, “Analysis of multilayer meanderline polarizer,” Int. J. Microwave Millimeter-Wave Comput.-Aided Eng. 7(6), 442–454 (1998).

Boreman, G. D.

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi 5(5), 1113–1116 (2008) (c).
[CrossRef]

J. S. Tharp, D. J. Shelton, S. L. Wadsworth, and G. D. Boreman, “Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate,” J. Vac. Sci. Technol. B 26(5), 1821–1823 (2008).
[CrossRef]

J. S. Tharp, J. Alda, and G. D. Boreman, “Off-axis behavior of an infrared meander-line waveplate,” Opt. Lett. 32(19), 2852–2854 (2007).
[CrossRef] [PubMed]

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and Demonstration of an Infrared Meanderline Phase Retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single-layer meanderline phase retarder at infrared,” Opt. Lett. 31(18), 2687–2689 (2006).
[CrossRef] [PubMed]

Boye, R. B.

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith., Microfab, Microsyst. 5(4), 043007 (2006).
[CrossRef]

Brundrett, D. L.

Carter, T. R.

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith., Microfab, Microsyst. 5(4), 043007 (2006).
[CrossRef]

Chan, K. K.

K. K. Chan, T. W. Ang, T. H. Chao, and T. S. Yeo, “Accurate analysis of meanderline polarizers with finite thicknesses using mode matching,” IEEE Trans. Antenn. Propag. 56(11), 3580–3585 (2008).
[CrossRef]

Chao, T. H.

K. K. Chan, T. W. Ang, T. H. Chao, and T. S. Yeo, “Accurate analysis of meanderline polarizers with finite thicknesses using mode matching,” IEEE Trans. Antenn. Propag. 56(11), 3580–3585 (2008).
[CrossRef]

Chipman, R. A.

Chu, R.-S.

R.-S. Chu and K.-M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antenn. Propag. 35(6), 652–661 (1987).
[CrossRef]

Chun, C. S. L.

C. S. L. Chun, “Microscale waveplates for polarimetric infrared imaging,” Proc. SPIE 5074, 286–297 (2003).
[CrossRef]

Chwalek, T. J.

A. K. Bhattacharyya and T. J. Chwalek, “Analysis of multilayer meanderline polarizer,” Int. J. Microwave Millimeter-Wave Comput.-Aided Eng. 7(6), 442–454 (1998).

Clarke, K. D.

D. F. Bezuidenhout, K. D. Clarke, and R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155(1), 17–30 (1987).
[CrossRef]

Cojocaru, E.

Cruz-Cabrera, A. A.

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith., Microfab, Microsyst. 5(4), 043007 (2006).
[CrossRef]

Day, G. W.

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Deguzman, P. C.

Dereniak, E. L.

M. W. Kudenov, E. L. Dereniak, L. Pezzaniti, and G. R. Gerhart, “2-cam LWIR imaging Stokes polarimeter,” Proc. SPIE 6972, 69720K (2008).
[CrossRef]

Deutsch, J. C.

J. Y. Robic, B. Rolland, J. C. Deutsch, and P. Gallais, “Ion-assisted deposition of yttrium fluoride as a substitute for thorium fluoride: Application to infrared anti-reflection coating on germanium,” Proc. SPIE 2253, 552–558 (1994).
[CrossRef]

Dorschner, T. A.

Folks, W. R.

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi 5(5), 1113–1116 (2008) (c).
[CrossRef]

Gallais, P.

J. Y. Robic, B. Rolland, J. C. Deutsch, and P. Gallais, “Ion-assisted deposition of yttrium fluoride as a substitute for thorium fluoride: Application to infrared anti-reflection coating on germanium,” Proc. SPIE 2253, 552–558 (1994).
[CrossRef]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Garrou, P.

P. Garrou, “Polymer dielectrics for multichip module packaging,” Proc. IEEE 80(12), 1942–1954 (1992).
[CrossRef]

Gaylord, T. K.

Gerhart, G. R.

M. W. Kudenov, J. L. Pezzaniti, and G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
[CrossRef]

M. W. Kudenov, E. L. Dereniak, L. Pezzaniti, and G. R. Gerhart, “2-cam LWIR imaging Stokes polarimeter,” Proc. SPIE 6972, 69720K (2008).
[CrossRef]

Gieszelmann, E. L.

E. L. Gieszelmann, S. F. Jacobs, and H. E. Morrow, “Simple quartz birefringent quarter-wave plate for use at 3.39 μm,” J. Opt. Soc. Am. A 59(10), 1381–1383 (1969).
[CrossRef]

Ginn, J. C.

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi 5(5), 1113–1116 (2008) (c).
[CrossRef]

J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single-layer meanderline phase retarder at infrared,” Opt. Lett. 31(18), 2687–2689 (2006).
[CrossRef] [PubMed]

Glytsis, E. N.

Hacking, C. A.

L. Young, L. A. Robinson, and C. A. Hacking, “Meander-line Polarizer,” IEEE Trans. Antenn. Propag. 21(3), 376–378 (1973).
[CrossRef]

Hale, P. D.

Hobbs, D. S.

Iwanaga, M.

M. Iwanaga, “Ultracompact waveplates: approach from metamaterials,” Appl. Phys. Lett. 92(15), 153102 (2008).
[CrossRef]

Iwata, K.

Jacobs, S. F.

E. L. Gieszelmann, S. F. Jacobs, and H. E. Morrow, “Simple quartz birefringent quarter-wave plate for use at 3.39 μm,” J. Opt. Soc. Am. A 59(10), 1381–1383 (1969).
[CrossRef]

Jin, G.

Jones, M. W.

Jordanov, B.

Julea, T.

Kang, G.

Kemme, S. A.

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith., Microfab, Microsyst. 5(4), 043007 (2006).
[CrossRef]

Kikuta, H.

Kolev, D.

Korte, E. H.

Kudenov, M. W.

M. W. Kudenov, J. L. Pezzaniti, and G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
[CrossRef]

M. W. Kudenov, E. L. Dereniak, L. Pezzaniti, and G. R. Gerhart, “2-cam LWIR imaging Stokes polarimeter,” Proc. SPIE 6972, 69720K (2008).
[CrossRef]

Lail, B. A.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and Demonstration of an Infrared Meanderline Phase Retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single-layer meanderline phase retarder at infrared,” Opt. Lett. 31(18), 2687–2689 (2006).
[CrossRef] [PubMed]

Lee, K.-M.

R.-S. Chu and K.-M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antenn. Propag. 35(6), 652–661 (1987).
[CrossRef]

Levrel, J. R.

C. Terret, J. R. Levrel, and K. Mahdjoubi, “Susceptance computation of a meander-line polarizer layer,” IEEE Trans. Antenn. Propag. 32(9), 1007–1011 (1984).
[CrossRef]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Liu, J.

Lompado, A.

Lopez-Alonso, J. M.

Mahdjoubi, K.

C. Terret, J. R. Levrel, and K. Mahdjoubi, “Susceptance computation of a meander-line polarizer layer,” IEEE Trans. Antenn. Propag. 32(9), 1007–1011 (1984).
[CrossRef]

Marhefka, R. J.

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[CrossRef]

Meier, J. T.

Middleton, C. F.

Morrow, H. E.

E. L. Gieszelmann, S. F. Jacobs, and H. E. Morrow, “Simple quartz birefringent quarter-wave plate for use at 3.39 μm,” J. Opt. Soc. Am. A 59(10), 1381–1383 (1969).
[CrossRef]

Munk, B. A.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and Demonstration of an Infrared Meanderline Phase Retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single-layer meanderline phase retarder at infrared,” Opt. Lett. 31(18), 2687–2689 (2006).
[CrossRef] [PubMed]

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[CrossRef]

Nichitiu, F.

Nordin, G. P.

Ohira, Y.

Okorkov, V. N.

V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
[CrossRef]

Panchenko, V. Y.

V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
[CrossRef]

Pezzaniti, J. L.

M. W. Kudenov, J. L. Pezzaniti, and G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
[CrossRef]

Pezzaniti, L.

M. W. Kudenov, E. L. Dereniak, L. Pezzaniti, and G. R. Gerhart, “2-cam LWIR imaging Stokes polarimeter,” Proc. SPIE 6972, 69720K (2008).
[CrossRef]

Pretorius, R.

D. F. Bezuidenhout, K. D. Clarke, and R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155(1), 17–30 (1987).
[CrossRef]

Pryor, J. B.

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[CrossRef]

Raynolds, J. E.

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[CrossRef]

Resler, D. P.

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Robic, J. Y.

J. Y. Robic, B. Rolland, J. C. Deutsch, and P. Gallais, “Ion-assisted deposition of yttrium fluoride as a substitute for thorium fluoride: Application to infrared anti-reflection coating on germanium,” Proc. SPIE 2253, 552–558 (1994).
[CrossRef]

Robinson, L. A.

L. Young, L. A. Robinson, and C. A. Hacking, “Meander-line Polarizer,” IEEE Trans. Antenn. Propag. 21(3), 376–378 (1973).
[CrossRef]

Rolland, B.

J. Y. Robic, B. Rolland, J. C. Deutsch, and P. Gallais, “Ion-assisted deposition of yttrium fluoride as a substitute for thorium fluoride: Application to infrared anti-reflection coating on germanium,” Proc. SPIE 2253, 552–558 (1994).
[CrossRef]

Russkikh, B. V.

V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
[CrossRef]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Samora, S.

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith., Microfab, Microsyst. 5(4), 043007 (2006).
[CrossRef]

Seminogov, V. N.

V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
[CrossRef]

Sharp, R. C.

Shelton, D. J.

J. S. Tharp, D. J. Shelton, S. L. Wadsworth, and G. D. Boreman, “Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate,” J. Vac. Sci. Technol. B 26(5), 1821–1823 (2008).
[CrossRef]

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi 5(5), 1113–1116 (2008) (c).
[CrossRef]

Sokolov, V. I.

V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
[CrossRef]

Sornsin, E. A.

Spinu, C. L.

Tan, Q.

Terret, C.

C. Terret, J. R. Levrel, and K. Mahdjoubi, “Susceptance computation of a meander-line polarizer layer,” IEEE Trans. Antenn. Propag. 32(9), 1007–1011 (1984).
[CrossRef]

Tharp, J. S.

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi 5(5), 1113–1116 (2008) (c).
[CrossRef]

J. S. Tharp, D. J. Shelton, S. L. Wadsworth, and G. D. Boreman, “Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate,” J. Vac. Sci. Technol. B 26(5), 1821–1823 (2008).
[CrossRef]

J. S. Tharp, J. Alda, and G. D. Boreman, “Off-axis behavior of an infrared meander-line waveplate,” Opt. Lett. 32(19), 2852–2854 (2007).
[CrossRef] [PubMed]

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and Demonstration of an Infrared Meanderline Phase Retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single-layer meanderline phase retarder at infrared,” Opt. Lett. 31(18), 2687–2689 (2006).
[CrossRef] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Tsankov, D.

Vawter, G. A.

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith., Microfab, Microsyst. 5(4), 043007 (2006).
[CrossRef]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Wadsworth, S. L.

J. S. Tharp, D. J. Shelton, S. L. Wadsworth, and G. D. Boreman, “Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate,” J. Vac. Sci. Technol. B 26(5), 1821–1823 (2008).
[CrossRef]

Wang, X.

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Wendt, J. R.

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith., Microfab, Microsyst. 5(4), 043007 (2006).
[CrossRef]

Yakunin, V. P.

V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
[CrossRef]

Yeo, T. S.

K. K. Chan, T. W. Ang, T. H. Chao, and T. S. Yeo, “Accurate analysis of meanderline polarizers with finite thicknesses using mode matching,” IEEE Trans. Antenn. Propag. 56(11), 3580–3585 (2008).
[CrossRef]

Young, L.

L. Young, L. A. Robinson, and C. A. Hacking, “Meander-line Polarizer,” IEEE Trans. Antenn. Propag. 21(3), 376–378 (1973).
[CrossRef]

Aided Eng. (1)

A. K. Bhattacharyya and T. J. Chwalek, “Analysis of multilayer meanderline polarizer,” Int. J. Microwave Millimeter-Wave Comput.-Aided Eng. 7(6), 442–454 (1998).

Appl. Opt. (7)

Appl. Phys. Lett. (1)

M. Iwanaga, “Ultracompact waveplates: approach from metamaterials,” Appl. Phys. Lett. 92(15), 153102 (2008).
[CrossRef]

Appl. Spectrosc. (1)

IEEE Trans. Antenn. Propag. (5)

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and Demonstration of an Infrared Meanderline Phase Retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[CrossRef]

L. Young, L. A. Robinson, and C. A. Hacking, “Meander-line Polarizer,” IEEE Trans. Antenn. Propag. 21(3), 376–378 (1973).
[CrossRef]

R.-S. Chu and K.-M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antenn. Propag. 35(6), 652–661 (1987).
[CrossRef]

K. K. Chan, T. W. Ang, T. H. Chao, and T. S. Yeo, “Accurate analysis of meanderline polarizers with finite thicknesses using mode matching,” IEEE Trans. Antenn. Propag. 56(11), 3580–3585 (2008).
[CrossRef]

C. Terret, J. R. Levrel, and K. Mahdjoubi, “Susceptance computation of a meander-line polarizer layer,” IEEE Trans. Antenn. Propag. 32(9), 1007–1011 (1984).
[CrossRef]

J. Appl. Phys. (1)

J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003).
[CrossRef]

J. Microlith., Microfab, Microsyst. (1)

R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith., Microfab, Microsyst. 5(4), 043007 (2006).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Vac. Sci. Technol. B (1)

J. S. Tharp, D. J. Shelton, S. L. Wadsworth, and G. D. Boreman, “Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate,” J. Vac. Sci. Technol. B 26(5), 1821–1823 (2008).
[CrossRef]

Opt. Eng. (2)

M. W. Kudenov, J. L. Pezzaniti, and G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009).
[CrossRef]

V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (1)

V. K. Arora, “Quantum size effect in thin-wire transport,” Phys. Rev. B 23(10), 5611–5612 (1981).
[CrossRef]

Phys. Status Solidi (1)

W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi 5(5), 1113–1116 (2008) (c).
[CrossRef]

Proc. IEEE (1)

P. Garrou, “Polymer dielectrics for multichip module packaging,” Proc. IEEE 80(12), 1942–1954 (1992).
[CrossRef]

Proc. SPIE (3)

C. S. L. Chun, “Microscale waveplates for polarimetric infrared imaging,” Proc. SPIE 5074, 286–297 (2003).
[CrossRef]

M. W. Kudenov, E. L. Dereniak, L. Pezzaniti, and G. R. Gerhart, “2-cam LWIR imaging Stokes polarimeter,” Proc. SPIE 6972, 69720K (2008).
[CrossRef]

J. Y. Robic, B. Rolland, J. C. Deutsch, and P. Gallais, “Ion-assisted deposition of yttrium fluoride as a substitute for thorium fluoride: Application to infrared anti-reflection coating on germanium,” Proc. SPIE 2253, 552–558 (1994).
[CrossRef]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Thin Solid Films (1)

D. F. Bezuidenhout, K. D. Clarke, and R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155(1), 17–30 (1987).
[CrossRef]

Other (9)

D. Goldstein, Polarized Light 2nd Ed., (Marcel Dekker, New York, NY, 2003).

L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge, New York, NY, 1995).

S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” Sandia National Lab., Albuquerque, NM, Sandia Report SAND2006–6889, (2006).

H. Kikuta, K. Numata, M. Muto, K. Iwata, H. Toyota, K. Moriwaki, T. Yotuya, and H. Sato, “Polarization imaging camera with form birefringent micro-retarder array,” in Frontiers in Optics, OSA Technical Digest (CD), (2003).

B. A. Munk, Finite Antenna Arrays and FSS, (Wiley, Hoboken, NJ, 2003).

E. D. Palik, Handbook of optical constants of solids, vol. III., (Academic, San Diego, CA, 1997).

Z. Knittl, Optics of thin films; an optical multilayer theory, (Wiley, New York, NY, 1976).
[PubMed]

H. A. Macleod, Thin-film optical filters, (American Elsevier, New York, NY, 1969).

P. A. Rizzi, Microwave Engineering: Passive Circuits, (Prentice-Hall, Upper Saddle River, NJ, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Meanderline polarizer array for conversion of linear to circular polarization. Note that the incident polarization state has to be linear and rotated 45° about the meanderline axis so that equal components of the incident field pass through the TE and TM polarization modes.

Fig. 2
Fig. 2

Multilayer meanderline polarizer configuration with corresponding circuit model. Note that the k th unit cell (meanderline surface with dielectric layer) is the repeating element in the multilayer stack-up.

Fig. 3
Fig. 3

Unit cell and multilayer geometries for a meanderline polarizer. The lengths t1 and t2 are thicknesses of the BCB dielectric layers.

Fig. 4
Fig. 4

SEM micrograph of a single meanderline layer of each multilayer structure. The individual images marked a), b), and c) represent the metalized patterns for the 1-layer, 2-layer, and 3-layer devices, respectively.

Fig. 5
Fig. 5

Pre-set coordinate system on IR ellipsometer. The dashed arrow indicates the direction of beam propagation from the source. The IR-VASE has a built-in linear polarizer that automatically selects the TE or TM mode for analysis.

Fig. 6
Fig. 6

Fill-factor based transmission through a single layer, and a multilayer structure designed to give QWP behavior.

Fig. 7
Fig. 7

Optical constants of BCB and YF3 thin films in the LWIR.

Fig. 8
Fig. 8

Simulated a) phase shift and b) power transmission response for 2-layer and 3-layer meanderline QWP's with YF3 standoff layers.

Tables (3)

Tables Icon

Table 1 Optical constants of fabrication materials at 10.6 μm

Tables Icon

Table 2 Array dimensions for the multilayer QWP’s (in μm) a

Tables Icon

Table 3 Experimental and numerical results for multi-layered meanderline QWP’s operating at 10.6 μm.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Y k = n k Y o = 1 / Z k ,
β k = 2 π n k / λ 0 ,
T k = T B T A ,
T A = 1 2 [ ( 1 + Y k 1 Y k ) Y m k Y k ( 1 Y k 1 Y k ) Y m k Y k ( 1 Y k 1 Y k ) + Y m k Y k ( 1 + Y k 1 Y k ) + Y m k Y k ] ,
T B = [ exp ( i β k t k ) 0 0 exp ( i β k t k ) ] .
T ¯ = [ T ¯ 11 T ¯ 12 T ¯ 21 T ¯ 22 ] = T N T N 1 T k T 2 T 1 .
T N = T C T B T A ,
T C = 1 2 [ ( 1 + Y N Y 0 ) ( 1 Y N Y 0 ) ( 1 Y N Y 0 ) ( 1 + Y N Y 0 ) ] .
Γ = T ¯ 12 T ¯ 11 ,
τ = 1 T ¯ 11 det ( T ¯ ) .
R = | Γ | 2 ,
T = | τ | 2 Re ( n f ) ,
Γ = ( e i β 1 t 1 ( Y 1 Y 0 1 ) ( Y 0 Y 1 + Y m 1 Y 1 + 1 ) + e i β 1 t 1 ( Y 1 Y 0 + 1 ) ( Y 0 Y 1 + Y m 1 Y 1 1 ) ) e i β 1 t 1 ( Y 1 Y 0 1 ) ( Y 0 Y 1 + Y m 1 Y 1 + 1 ) e i β 1 t 1 ( Y 1 Y 0 + 1 ) ( Y 0 Y 1 Y m 1 Y 1 + 1 ) .
Y m 1 = 2 Y 0 Y 1 Γ cos ( β 1 t 1 ) + i sin ( β 1 t 1 ) ( ( 1 + Γ ) Y 1 2 + ( 1 + Γ ) Y 0 2 ) ( 1 + Γ ) ( Y 1 cos ( β 1 t 1 ) + i Y 0 sin ( β 1 t 1 ) ) .
T t o t a l = 1 2 ( T T E + T T M ) .
δ = | arctan ( Im ( τ T E ) Re ( τ T E ) ) arctan ( Im ( τ T M ) Re ( τ T M ) ) | .
σ D C = 2 n k ω ε 0 ,
A R = 1 / ( tan [ 1 2 arcsin { sin ( 2 ψ ) sin ( δ ) } ] ) .
T = ( 1 F F ) N ,

Metrics