Abstract

We demonstrate the generation of microwave and millimeter-wave frequencies from 26 to 100 GHz by heterodyning the output modes of a dual-wavelength fiber laser based on stimulated Brillouin scattering. The output frequency is tunable in steps of 10.3 MHz, equal to the free spectral range of the resonator. The noise properties of the beat frequency indicate a microwave linewidth of < 2 Hz. We discuss potential for operation into the terahertz regime.

© 2010 OSA

Full Article  |  PDF Article
Related Articles
Highly coherent terahertz wave generation with a dual-frequency Brillouin fiber laser and a 1.55 μm photomixer

G. Ducournau, P. Szriftgiser, T. Akalin, A. Beck, D. Bacquet, E. Peytavit, and J. F. Lampin
Opt. Lett. 36(11) 2044-2046 (2011)

An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter

Fan Jiang, Jia Haur Wong, Huy Quoc Lam, Junqiang Zhou, Sheel Aditya, Peng Huei Lim, Kenneth Eng Kian Lee, Perry Ping Shum, and Xinliang Zhang
Opt. Express 21(14) 16381-16389 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. Lim, A. Nirmalathas, M. Bakaul, K.-L. Lee, D. Novak, and R. Waterhouse, “Mitigation strategy for transmission impairments in millimeter-wave radio-over-fiber networks,” J. Opt. Netw. 8(2), 201–214 (2009).
    [Crossref]
  2. N. J. Gomes, M. Morant, A. Alphones, B. Cabon, J. E. Mitchell, C. Lethien, M. Csörnyei, A. Stöhr, and S. Iezekiel, “Radio-over-fiber transport for the support of wireless broadband services,” J. Opt. Netw. 8(2), 156–178 (2009).
    [Crossref]
  3. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [Crossref]
  4. J.-F. Cliche, B. Shillue, C. Latrasse, M. Têtu, and L. D’Addario, “A high coherence, high stability laser for the photonic local oscillator distribution of the Atacama Large Millimeter Array,” Proc. SPIE 5489, 1115–1126 (2004).
    [Crossref]
  5. K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
    [Crossref]
  6. G. J. Simonis and D. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microw. Theory Tech. 38(5), 667–669 (1990).
    [Crossref]
  7. J.-F. Cliche, B. Shillue, M. Têtu, and M. Poulin, “A 100-GHz-tunable photonic millimeter wave synthesizer for the Atacama Large Millimeter Array radiotelescope,” IEEE/MTT-S International Microwave Symposium, pp.349–352, 3–8 June 2007.
  8. W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarization distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997).
    [Crossref]
  9. S. Pajarola, G. Guekos, P. Nizzola, and H. Kawaguchi, “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microw. Theory Tech. 47(7), 1234–1240 (1999).
    [Crossref]
  10. T. R. Clark, M. G. Airola, and R. M. Sova, “Demonstration of dual-polarization fiber ring laser for microwave generation,” in IEEE International Meeting on Microwave Photonics,2004 (IEEE, 2004), pp. 127–130.
  11. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008).
    [Crossref]
  12. J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91(1), 99–103 (2008).
    [Crossref]
  13. S. L. Pan and J. P. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17(7), 5414–5419 (2009).
    [Crossref] [PubMed]
  14. J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
    [Crossref]
  15. M. L. Dennis, R. M. Sova, and T. R. Clark, “Dual-wavelength Brillouin fiber laser for microwave frequency generation,” Optical Fiber Communications Conference 2007 (Anaheim, CA, March 25–29, 2007), paper OWJ6.
  16. M.L. Dennis, R.M. Sova and T.R. Clark, “Microwave frequency generation up to 27.5 GHz using a dual-wavelength Brillouin fiber laser,” 2007 Dig. IEEE LEOS Summer Topical Mtg., 195–195 (2007).
  17. J. H. Geng, S. Staines, and S. B. Jiang, “Dual-frequency Brillouin fiber laser for optical generation of tunable low-noise radio frequency/microwave frequency,” Opt. Lett. 33(1), 16–18 (2008).
    [Crossref]
  18. M. L. Dennis, M. C. Gross, T. R. Clark, D. Novak, and R. B. Waterhouse, “Broadband data transmission in a 40 GHz fiber radio link using a dual-wavelength SBS fiber laser,” Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OWF4 (2009).
  19. M. C. Gross, T. R. Clark, and M. L. Dennis, “Narrow-linewidth microwave frequency generation by dual-wavelength Brillouin fiber laser,” Technical Digest of the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society., 151–152 (2008).
  20. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold,” Opt. Lett. 7(10), 509–511 (1982).
    [Crossref] [PubMed]
  21. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  22. K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin fiber laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
    [Crossref]
  23. Q. Yu, X. Bao, and L. Chen, “Temperature dependence of Brillouin frequency, power, and bandwidth in panda, bow-tie, and tiger polarization-maintaining fibers,” Opt. Lett. 29(1), 17–19 (2004).
    [Crossref] [PubMed]
  24. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [Crossref]
  25. http://www.u2t.de/fileadmin/redakteure/Products/Datasheets/Pre-DS_XPDV4120R.pdf
  26. A. Beling and J. C. Campbell, “InP-based high-speed photodetectors,” J. Lightwave Technol. 27(3), 343–355 (2009).
    [Crossref]
  27. F. F. De Lucia, “Spectroscopy in the Terahertz Spectral Region,” in Sensing with Terahertz Radiation, D. Mittleman, ed. (Springer-Verlag, Berlin, 2003).

2009 (4)

2008 (3)

2006 (2)

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
[Crossref]

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

2004 (2)

Q. Yu, X. Bao, and L. Chen, “Temperature dependence of Brillouin frequency, power, and bandwidth in panda, bow-tie, and tiger polarization-maintaining fibers,” Opt. Lett. 29(1), 17–19 (2004).
[Crossref] [PubMed]

J.-F. Cliche, B. Shillue, C. Latrasse, M. Têtu, and L. D’Addario, “A high coherence, high stability laser for the photonic local oscillator distribution of the Atacama Large Millimeter Array,” Proc. SPIE 5489, 1115–1126 (2004).
[Crossref]

2001 (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

1999 (1)

S. Pajarola, G. Guekos, P. Nizzola, and H. Kawaguchi, “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microw. Theory Tech. 47(7), 1234–1240 (1999).
[Crossref]

1997 (2)

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarization distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997).
[Crossref]

1990 (1)

G. J. Simonis and D. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microw. Theory Tech. 38(5), 667–669 (1990).
[Crossref]

1989 (1)

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[Crossref]

1982 (1)

1976 (1)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin fiber laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
[Crossref]

Alphones, A.

Bakaul, M.

Bao, X.

Beling, A.

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Blake, M.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

Bretenaker, F.

Brunel, M.

Cabon, B.

Campbell, J. C.

Chen, L.

Cheng, X. P.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91(1), 99–103 (2008).
[Crossref]

Chodorow, M.

Cliche, J.-F.

J.-F. Cliche, B. Shillue, C. Latrasse, M. Têtu, and L. D’Addario, “A high coherence, high stability laser for the photonic local oscillator distribution of the Atacama Large Millimeter Array,” Proc. SPIE 5489, 1115–1126 (2004).
[Crossref]

Cowle, G. J.

W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarization distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997).
[Crossref]

Csörnyei, M.

D’Addario, L.

J.-F. Cliche, B. Shillue, C. Latrasse, M. Têtu, and L. D’Addario, “A high coherence, high stability laser for the photonic local oscillator distribution of the Atacama Large Millimeter Array,” Proc. SPIE 5489, 1115–1126 (2004).
[Crossref]

Dagenais, M.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[Crossref]

de Sandro, J. P.

W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarization distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997).
[Crossref]

Dolfi, D.

Dong, X. P.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91(1), 99–103 (2008).
[Crossref]

Ellis, A. D.

W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarization distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997).
[Crossref]

Esman, R. D.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[Crossref]

Geng, J.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

Geng, J. H.

Goldberg, L.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[Crossref]

Gomes, N. J.

Guekos, G.

S. Pajarola, G. Guekos, P. Nizzola, and H. Kawaguchi, “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microw. Theory Tech. 47(7), 1234–1240 (1999).
[Crossref]

Hill, K. O.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin fiber laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
[Crossref]

Huignard, J.-P.

Iezekiel, S.

Jiang, S.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

Jiang, S. B.

Johnson, D. C.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin fiber laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
[Crossref]

Kawaguchi, H.

S. Pajarola, G. Guekos, P. Nizzola, and H. Kawaguchi, “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microw. Theory Tech. 47(7), 1234–1240 (1999).
[Crossref]

Kawasaki, B. S.

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin fiber laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
[Crossref]

Latrasse, C.

J.-F. Cliche, B. Shillue, C. Latrasse, M. Têtu, and L. D’Addario, “A high coherence, high stability laser for the photonic local oscillator distribution of the Atacama Large Millimeter Array,” Proc. SPIE 5489, 1115–1126 (2004).
[Crossref]

Le Floch, A.

Lee, K.-L.

Lethien, C.

Lim, C.

Loh, W. H.

W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarization distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997).
[Crossref]

Mitchell, J. E.

Morant, M.

Morvan, L.

Niklès, M.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Nirmalathas, A.

Nizzola, P.

S. Pajarola, G. Guekos, P. Nizzola, and H. Kawaguchi, “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microw. Theory Tech. 47(7), 1234–1240 (1999).
[Crossref]

Novak, D.

Pajarola, S.

S. Pajarola, G. Guekos, P. Nizzola, and H. Kawaguchi, “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microw. Theory Tech. 47(7), 1234–1240 (1999).
[Crossref]

Pan, S. L.

Pillet, G.

Purchase, D. G.

G. J. Simonis and D. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microw. Theory Tech. 38(5), 667–669 (1990).
[Crossref]

Robert, P. A.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Samson, B. N.

W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarization distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997).
[Crossref]

Seeds, A. J.

Shaw, H. J.

Shillue, B.

J.-F. Cliche, B. Shillue, C. Latrasse, M. Têtu, and L. D’Addario, “A high coherence, high stability laser for the photonic local oscillator distribution of the Atacama Large Millimeter Array,” Proc. SPIE 5489, 1115–1126 (2004).
[Crossref]

Shum, P.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91(1), 99–103 (2008).
[Crossref]

Simonis, G. J.

G. J. Simonis and D. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microw. Theory Tech. 38(5), 667–669 (1990).
[Crossref]

Staines, S.

J. H. Geng, S. Staines, and S. B. Jiang, “Dual-frequency Brillouin fiber laser for optical generation of tunable low-noise radio frequency/microwave frequency,” Opt. Lett. 33(1), 16–18 (2008).
[Crossref]

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

Stöhr, A.

Stokes, L. F.

Têtu, M.

J.-F. Cliche, B. Shillue, C. Latrasse, M. Têtu, and L. D’Addario, “A high coherence, high stability laser for the photonic local oscillator distribution of the Atacama Large Millimeter Array,” Proc. SPIE 5489, 1115–1126 (2004).
[Crossref]

Thévenaz, L.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Vallet, M.

Wang, Z.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

Waterhouse, R.

Weller, J. F.

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[Crossref]

Williams, K. J.

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
[Crossref]

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[Crossref]

Xia, L.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91(1), 99–103 (2008).
[Crossref]

Yao, J. P.

Yu, Q.

Zhou, J. L.

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91(1), 99–103 (2008).
[Crossref]

Zong, J.

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Appl. Phys. B (1)

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91(1), 99–103 (2008).
[Crossref]

Appl. Phys. Lett. (1)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin fiber laser,” Appl. Phys. Lett. 28(10), 608–609 (1976).
[Crossref]

Electron. Lett. (2)

K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989).
[Crossref]

W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarization distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

S. Pajarola, G. Guekos, P. Nizzola, and H. Kawaguchi, “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microw. Theory Tech. 47(7), 1234–1240 (1999).
[Crossref]

G. J. Simonis and D. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microw. Theory Tech. 38(5), 667–669 (1990).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Netw. (2)

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (1)

J.-F. Cliche, B. Shillue, C. Latrasse, M. Têtu, and L. D’Addario, “A high coherence, high stability laser for the photonic local oscillator distribution of the Atacama Large Millimeter Array,” Proc. SPIE 5489, 1115–1126 (2004).
[Crossref]

Other (8)

J.-F. Cliche, B. Shillue, M. Têtu, and M. Poulin, “A 100-GHz-tunable photonic millimeter wave synthesizer for the Atacama Large Millimeter Array radiotelescope,” IEEE/MTT-S International Microwave Symposium, pp.349–352, 3–8 June 2007.

T. R. Clark, M. G. Airola, and R. M. Sova, “Demonstration of dual-polarization fiber ring laser for microwave generation,” in IEEE International Meeting on Microwave Photonics,2004 (IEEE, 2004), pp. 127–130.

M. L. Dennis, M. C. Gross, T. R. Clark, D. Novak, and R. B. Waterhouse, “Broadband data transmission in a 40 GHz fiber radio link using a dual-wavelength SBS fiber laser,” Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OWF4 (2009).

M. C. Gross, T. R. Clark, and M. L. Dennis, “Narrow-linewidth microwave frequency generation by dual-wavelength Brillouin fiber laser,” Technical Digest of the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society., 151–152 (2008).

M. L. Dennis, R. M. Sova, and T. R. Clark, “Dual-wavelength Brillouin fiber laser for microwave frequency generation,” Optical Fiber Communications Conference 2007 (Anaheim, CA, March 25–29, 2007), paper OWJ6.

M.L. Dennis, R.M. Sova and T.R. Clark, “Microwave frequency generation up to 27.5 GHz using a dual-wavelength Brillouin fiber laser,” 2007 Dig. IEEE LEOS Summer Topical Mtg., 195–195 (2007).

http://www.u2t.de/fileadmin/redakteure/Products/Datasheets/Pre-DS_XPDV4120R.pdf

F. F. De Lucia, “Spectroscopy in the Terahertz Spectral Region,” in Sensing with Terahertz Radiation, D. Mittleman, ed. (Springer-Verlag, Berlin, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup. CW: continuous-wave. Amp mod: amplitude modulator. EDFA: erbium-doped fiber amplifier. φ-mod: phase modulator. SBS: stimulated Brillouin scattering. OSA: optical spectrum analyzer. HV: high-voltage amplifier. PID: proportional-integral-differential amplifier. (Not all parameters are used.) RFSA: radio-frequency spectrum analyzer.

Fig. 2
Fig. 2

Diagram of cavity resonances, pump lines, gain bands, lasing lines, and beatnote. ΔνFSR: free spectral range. ΔνFSR: cavity-resonance full width at half maximum. ν1-pump and ν2-pump: lower and higher pump frequencies. f 0: drive frequency. V bias: bias voltage. N: an integer. νpump: center pump frequency. νB: Brillouin shift. Δνgain: gain-band full width at half maximum. ν1-out and ν2-out: lower and higher lasing frequencies. f out: beatnote frequency.

Fig. 3
Fig. 3

The Brillouin gain spectrum, measured at ~20 °C for the Fujikura PANDA used in the system of Fig. 1 (light red crosses), a Lorentzian fit of the gain (dark red curve), and the transmission spectrum of the resonator (green curve). The fit is centered at 10.868 GHz and has full width at half maximum (FWHM) of 14.6 MHz. The cavity resonances were also fit, on average, to a Lorentzian with a FWHM of 527 kHz.

Fig. 4
Fig. 4

(a) Composite microwave spectrum showing the beatnote at 33.989 GHz and mixing products. Resolution bandwidth (RBW): 1.0 MHz; video bandwidth: 10 kHz. (b) Optical spectrum corresponding to the conditions of (a). RBW: 2.0 GHz. The RF tone labels A–F in (a) correspond to the indicated optical tone separations in (b).

Fig. 5
Fig. 5

RF spectra of beatnotes at exemplary frequencies of (a) 26.004 05 GHz, (b) 50.001 42 GHz, (c) 73.998 46 GHz, and (d) 99.971 36 GHz. Traces (a-c) use the vertical axis on the left; the resolution and video bandwidths (RBW and VBW) for these traces are 200 kHz and 10 kHz, respectively. The right-hand vertical axis corresponds to trace (d) only; the RBW and VBW for trace (d) are 200 Hz and 20 Hz.

Fig. 6
Fig. 6

RF spectra of beatnotes at exemplary frequencies of (a) 26.004 05 GHz, (b) 50.001 42 GHz, (c) 73.998 46 GHz, and (d) 99.971 36 GHz. For clarity, each trace is offset by ~20 dB from the next, and each is plotted against the frequency offset from its peak frequency. Resolution bandwidth: 50 Hz. Video bandwidth: 50 Hz.

Fig. 7
Fig. 7

Composite spectrum showing stepwise tunability of the laser. The steps are equal to the FSR of the cavity (10,290,487 ± 80 Hz). Alternating traces have even parity (first trace, third, etc., shown in blue) or odd parity (second, fourth, etc., shown in red).

Metrics