Abstract

Using multimode fibers for long-haul transmission is proposed and demonstrated experimentally. In particular few-mode fibers (FMFs) are demonstrated as a good compromise since they are sufficiently resistant to mode coupling compared to standard multimode fibers but they still can have large core diameters compared to single-mode fibers. As a result these fibers can have significantly less nonlinearity and at the same time they can have the same performance as single-mode fibers in terms of dispersion and loss. In the absence of mode coupling it is possible to use these fibers in the single-mode operation where all the data is carried in only one of the spatial modes throughout the fiber. It is shown experimentally that the single-mode operation is achieved simply by splicing single-mode fibers to both ends of a 35-km-long dual-mode fiber at 1310 nm. After 35 km of transmission, no modal dispersion or excess loss was observed. Finally the same fiber is placed in a recirculating loop and 3 WDM channels each carrying 6 Gb/s BPSK data were transmitted through1050 km of the few-mode fiber without modal dispersion.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. S. Bergano, “Wavelength division multiplexing in long-haul transoceanic transmission systems,” J. Lightwave Technol. 23(12), 4125–4139 (2005).
    [CrossRef]
  2. P. Nouchi, P. Sansonetti, S. Landais, G. Barre, C. Brehm, J. Y. Boiort, B. Perrin, J. J. Girard, and J. Auge, "Low-loss single-mode fiber with high nonlinear effective area," in Optical Fiber Communications Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper ThH2.
  3. H. T. Hattori and A. Safaai-Jazi, “Fiber designs with significantly reduced nonlinearity for very long distance transmission,” Appl. Opt. 37(15), 3190–3197 (1998).
    [CrossRef]
  4. C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, “DWDM 40G transmission over trans-pacific distance (10 000 km) using CSRZ-DPSK, enhanced FEC, and all-raman-amplified 100-km ultrawave fiber spans,” J. Lightwave Technol. 22(1), 203–207 (2004).
    [CrossRef]
  5. G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O. Bertran Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J. Dupuy, and S. Bigo, "Transmission of 16.4Tbit/s Capacity over 2,550km Using PDM QPSK Modulation Format and Coherent Receiver," in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP3.
  6. H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, and S. Kamei, "13.5-Tb/s (135 x 111-Gb/s/ch) No-Guard-Interval Coherent OFDM Transmission over 6,248 km Using SNR Maximized Second-Order DRA in the Extended L-Band," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPB5.
  7. G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s transmission over transocenic distance, using large effective area fiber, hybrid raman-erbium amplification and coherent detection,” in Proc of OFC, San Diego, USA, 2009, Paper PDPB6.
  8. A. H. Gnauck, P. J. Winver, S. Chanrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10x224-gb/s WDM transmission of 28-G baud PDM 16-QAM on a 50-Ghz Grid over 1,200 km of fiber,” in Proc of OFC 2010, Paper PDPB8.
  9. X. Zhou, J. Yu, M. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, and R. Lingle, 64-Tb/s (640x107-Gb/s) PDM-36QAM transmission over 320 km using both pre- and post-transmission digital equalization,” in Proc. of OFC 2010, Paper PDPB9.
  10. J.-X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Philipetskii, and N. S. And, Bergano, “Transmission of 96x100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608 km and 400% spectral efficiency over 4,368 km,” in Proc of OFC 2010, Paper PDPB10.
  11. A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
    [CrossRef]
  12. A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, and R. M. Derosier, “8 x 10 Gb/s transmission through 280 km of dispersion-managed fiber,” IEEE Photon. Technol. Lett. 5(10), 1233–1235 (1993).
    [CrossRef]
  13. A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agarwal, S. Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maywar, M. Movassaghi, X. Liu, C. Xu, X. Wei, and D. M. Gill, “2.5 tb/s (64 x 42.7 Gb/s) transmission over 40 x 100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans,” in Proc. of OFC 2002, Paper PD-FC2.
  14. T. Mizuochi, K. Ishida, T. Kobayashi, J. Abe, K. Kinjo, K. Motoshima, and K. Kasahara, “A comparative study of DPSK and OOK WDM transmission over transoceanic distances and their performance degradations due to nonlinear phase noise,” J. Lightwave Technol. 21(9), 1933–1943 (2003).
    [CrossRef]
  15. G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, and S. Bigo, “Transmission of 40Gb/s QPSK with coherent detection over ultra-long distance improved by nonlinearity mitigation,” in Proc. Eur. Conf. Opt. Commun. 2006.
  16. F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photonics Journal 1(2), 144–152 (2009).
    [CrossRef]
  17. R.-J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35(18), 1576–1578 (1999).
    [CrossRef]
  18. P. V. Mamyshev and N. A. Mamysheva, “Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing,” Opt. Lett. 24(21), 1454–1456 (1999).
    [CrossRef]
  19. M.-J. Li and D. A. Nolan, “Optical transmission fiber design evolution,” J. Lightwave Technol. 26(9), 1079–1092 (2008).
    [CrossRef]
  20. Z. Haas and M. A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11(7), 1125–1131 (1993).
    [CrossRef]
  21. D. H. Sim, Y. Takushima, and Y. C. Chung, “High-speed multimode fiber transmission by using mode-field matched center-launching technique,” J. Lightwave Technol. 27(8), 1018–1026 (2009).
    [CrossRef]
  22. Z. Tong, Q. Yang, Y. Ma, and W. Shieh, “21.4 Gbit/s transmission over 200 km multimode fiber using coherent optical OFDM,” Electron. Lett. 44(23), 1373–1374 (2008).
    [CrossRef]
  23. W. Shieh, “OFDM for adaptive ultrahigh-speed optical networks,” Optical Fiber Communication Conference National Fiber Optic Engineers Conference OFC-NFOEC'2010, paper OWO1, San Diego, California, USA, 2010.
  24. P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, and G. Kuyt, “15.6-Gb/s transmission over 1 km of next generation multimode fiber,” IEEE Photon. Technol. Lett. 14(5), 717–719 (2002).
    [CrossRef]
  25. P. Pepeljugoski, M. J. Hackert, J. S. Abbott, S. E. Swanson, S. E. Golowich, A. J. Ritger, P. Kolesar, Y. C. Chen, and P. Pleunis, “Development of system specification for laser-optimized 50-μm multimode fiber for multigigabit short-wavelength LANs,” J. Lightwave Technol. 21(5), 1256–1275 (2003).
    [CrossRef]
  26. L. G. Cohen and S. D. Personick, “Length dependence of pulse dispersion in a long multimode optical fiber,” Appl. Opt. 14(6), 1357–1360 (1975).
    [CrossRef] [PubMed]
  27. K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron. 16(3), 356–362 (1980).
    [CrossRef]
  28. R. Olshansky, “Mode coupling effects in graded-index optical fibers,” Appl. Opt. 14(4), 935–945 (1975).
    [PubMed]
  29. N. Lagakos, J. H. Cole, and J. A. Bucaro, “Microbend fiber-optic sensor,” Appl. Opt. 26(11), 2171–2180 (1987).
    [CrossRef] [PubMed]
  30. D. Donlagic and B. Culshaw, “Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber,” J. Lightwave Technol. 17(10), 1856–1868 (1999).
    [CrossRef]
  31. D. Donlagic, “A low bending loss multimode fiber transmission system,” Opt. Express 17(24), 22081–22095 (2009).
    [CrossRef] [PubMed]
  32. N. Shibata, M. Tateda, S. Seikai, and N. Uchida, “Spatial technique for measuring modal delay differences in a dual-mode optical fiber,” Appl. Opt. 19(9), 1489–1492 (1980).
    [CrossRef] [PubMed]
  33. C. Emslie, “Polarization maintaining fibers,” in Specialty Optical Fibers Handbook, A. Méndez and T.F. Morse, eds. (Academic, 2007), pp. 243–277.
  34. M. Faucher, and Y. K. Lizé, `”Mode field adaptation for high power fiber lasers,” Conference on Lasers and Electro-Optics, 2007, Paper CF17.
  35. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
    [CrossRef] [PubMed]
  36. M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
    [CrossRef]

2009

2008

Z. Tong, Q. Yang, Y. Ma, and W. Shieh, “21.4 Gbit/s transmission over 200 km multimode fiber using coherent optical OFDM,” Electron. Lett. 44(23), 1373–1374 (2008).
[CrossRef]

M.-J. Li and D. A. Nolan, “Optical transmission fiber design evolution,” J. Lightwave Technol. 26(9), 1079–1092 (2008).
[CrossRef]

2006

2005

2004

2003

2002

P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, and G. Kuyt, “15.6-Gb/s transmission over 1 km of next generation multimode fiber,” IEEE Photon. Technol. Lett. 14(5), 717–719 (2002).
[CrossRef]

1999

1998

1993

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, and R. M. Derosier, “8 x 10 Gb/s transmission through 280 km of dispersion-managed fiber,” IEEE Photon. Technol. Lett. 5(10), 1233–1235 (1993).
[CrossRef]

Z. Haas and M. A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11(7), 1125–1131 (1993).
[CrossRef]

1990

A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[CrossRef]

1987

1980

N. Shibata, M. Tateda, S. Seikai, and N. Uchida, “Spatial technique for measuring modal delay differences in a dual-mode optical fiber,” Appl. Opt. 19(9), 1489–1492 (1980).
[CrossRef] [PubMed]

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron. 16(3), 356–362 (1980).
[CrossRef]

1975

Abbott, J. S.

Abe, J.

Akasaka, Y.

Bennike, J.

Bergano, N. S.

Bucaro, J. A.

Chen, Y. C.

Chraplyvy, A. R.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, and R. M. Derosier, “8 x 10 Gb/s transmission through 280 km of dispersion-managed fiber,” IEEE Photon. Technol. Lett. 5(10), 1233–1235 (1993).
[CrossRef]

A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[CrossRef]

Chung, Y. C.

Cohen, L. G.

Cole, J. H.

Culshaw, B.

Derosier, R. M.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, and R. M. Derosier, “8 x 10 Gb/s transmission through 280 km of dispersion-managed fiber,” IEEE Photon. Technol. Lett. 5(10), 1233–1235 (1993).
[CrossRef]

Dey, S.

Dimarcello, F. V.

Donlagic, D.

Essiambre, R.-J.

R.-J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35(18), 1576–1578 (1999).
[CrossRef]

Fjelde, T.

Gapontsev, D.

Ghalmi, S.

Gnauck, A. H.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, and R. M. Derosier, “8 x 10 Gb/s transmission through 280 km of dispersion-managed fiber,” IEEE Photon. Technol. Lett. 5(10), 1233–1235 (1993).
[CrossRef]

Golowich, S. E.

Haas, Z.

Z. Haas and M. A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11(7), 1125–1131 (1993).
[CrossRef]

Hackert, M. J.

Harris, D.

Hattori, H. T.

Ishida, K.

Ivshin, V.

Kasahara, K.

Kinjo, K.

Kitayama, K.

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron. 16(3), 356–362 (1980).
[CrossRef]

Kobayashi, T.

Kolesar, P.

Kuchta, D.

P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, and G. Kuyt, “15.6-Gb/s transmission over 1 km of next generation multimode fiber,” IEEE Photon. Technol. Lett. 14(5), 717–719 (2002).
[CrossRef]

Kuyt, G.

P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, and G. Kuyt, “15.6-Gb/s transmission over 1 km of next generation multimode fiber,” IEEE Photon. Technol. Lett. 14(5), 717–719 (2002).
[CrossRef]

Kwark, Y.

P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, and G. Kuyt, “15.6-Gb/s transmission over 1 km of next generation multimode fiber,” IEEE Photon. Technol. Lett. 14(5), 717–719 (2002).
[CrossRef]

Lagakos, N.

Li, G.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photonics Journal 1(2), 144–152 (2009).
[CrossRef]

Li, M.-J.

Liu, F.

Ma, Y.

Z. Tong, Q. Yang, Y. Ma, and W. Shieh, “21.4 Gbit/s transmission over 200 km multimode fiber using coherent optical OFDM,” Electron. Lett. 44(23), 1373–1374 (2008).
[CrossRef]

Mamyshev, P.

Mamyshev, P. V.

Mamysheva, N. A.

Mikkelsen, B.

Mizuochi, T.

Monberg, E.

Motoshima, K.

Nicholson, J. W.

Nolan, D. A.

Olshansky, R.

Pepeljugoski, P.

Personick, S. D.

Pleunis, P.

Ramachandran, S.

Rasmussen, C.

Raybon, G.

R.-J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35(18), 1576–1578 (1999).
[CrossRef]

Reeves-Hall, P.

Ritger, A. J.

Safaai-Jazi, A.

Santoro, M. A.

Z. Haas and M. A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11(7), 1125–1131 (1993).
[CrossRef]

Seikai, S.

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron. 16(3), 356–362 (1980).
[CrossRef]

N. Shibata, M. Tateda, S. Seikai, and N. Uchida, “Spatial technique for measuring modal delay differences in a dual-mode optical fiber,” Appl. Opt. 19(9), 1489–1492 (1980).
[CrossRef] [PubMed]

Serbe, P.

Shibata, N.

Shieh, W.

Z. Tong, Q. Yang, Y. Ma, and W. Shieh, “21.4 Gbit/s transmission over 200 km multimode fiber using coherent optical OFDM,” Electron. Lett. 44(23), 1373–1374 (2008).
[CrossRef]

Sim, D. H.

Swanson, S. E.

Takushima, Y.

Tateda, M.

Taylor, M. G.

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

Tkach, R. W.

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, and R. M. Derosier, “8 x 10 Gb/s transmission through 280 km of dispersion-managed fiber,” IEEE Photon. Technol. Lett. 5(10), 1233–1235 (1993).
[CrossRef]

Tong, Z.

Z. Tong, Q. Yang, Y. Ma, and W. Shieh, “21.4 Gbit/s transmission over 200 km multimode fiber using coherent optical OFDM,” Electron. Lett. 44(23), 1373–1374 (2008).
[CrossRef]

Uchida, N.

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron. 16(3), 356–362 (1980).
[CrossRef]

N. Shibata, M. Tateda, S. Seikai, and N. Uchida, “Spatial technique for measuring modal delay differences in a dual-mode optical fiber,” Appl. Opt. 19(9), 1489–1492 (1980).
[CrossRef] [PubMed]

van der Wagt, P.

Wisk, P.

Yaman, F.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photonics Journal 1(2), 144–152 (2009).
[CrossRef]

Yan, M. F.

Yang, Q.

Z. Tong, Q. Yang, Y. Ma, and W. Shieh, “21.4 Gbit/s transmission over 200 km multimode fiber using coherent optical OFDM,” Electron. Lett. 44(23), 1373–1374 (2008).
[CrossRef]

Appl. Opt.

Electron. Lett.

R.-J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett. 35(18), 1576–1578 (1999).
[CrossRef]

Z. Tong, Q. Yang, Y. Ma, and W. Shieh, “21.4 Gbit/s transmission over 200 km multimode fiber using coherent optical OFDM,” Electron. Lett. 44(23), 1373–1374 (2008).
[CrossRef]

IEEE J. Quantum Electron.

K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded-index fiber,” IEEE J. Quantum Electron. 16(3), 356–362 (1980).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, and G. Kuyt, “15.6-Gb/s transmission over 1 km of next generation multimode fiber,” IEEE Photon. Technol. Lett. 14(5), 717–719 (2002).
[CrossRef]

A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, and R. M. Derosier, “8 x 10 Gb/s transmission through 280 km of dispersion-managed fiber,” IEEE Photon. Technol. Lett. 5(10), 1233–1235 (1993).
[CrossRef]

M. G. Taylor, “Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments,” IEEE Photon. Technol. Lett. 16(2), 674–676 (2004).
[CrossRef]

IEEE Photonics Journal

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photonics Journal 1(2), 144–152 (2009).
[CrossRef]

J. Lightwave Technol.

A. R. Chraplyvy, “Limitations on lightwave communications imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990).
[CrossRef]

T. Mizuochi, K. Ishida, T. Kobayashi, J. Abe, K. Kinjo, K. Motoshima, and K. Kasahara, “A comparative study of DPSK and OOK WDM transmission over transoceanic distances and their performance degradations due to nonlinear phase noise,” J. Lightwave Technol. 21(9), 1933–1943 (2003).
[CrossRef]

N. S. Bergano, “Wavelength division multiplexing in long-haul transoceanic transmission systems,” J. Lightwave Technol. 23(12), 4125–4139 (2005).
[CrossRef]

C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, “DWDM 40G transmission over trans-pacific distance (10 000 km) using CSRZ-DPSK, enhanced FEC, and all-raman-amplified 100-km ultrawave fiber spans,” J. Lightwave Technol. 22(1), 203–207 (2004).
[CrossRef]

P. Pepeljugoski, M. J. Hackert, J. S. Abbott, S. E. Swanson, S. E. Golowich, A. J. Ritger, P. Kolesar, Y. C. Chen, and P. Pleunis, “Development of system specification for laser-optimized 50-μm multimode fiber for multigigabit short-wavelength LANs,” J. Lightwave Technol. 21(5), 1256–1275 (2003).
[CrossRef]

M.-J. Li and D. A. Nolan, “Optical transmission fiber design evolution,” J. Lightwave Technol. 26(9), 1079–1092 (2008).
[CrossRef]

Z. Haas and M. A. Santoro, “A mode-filtering scheme for improvement of the bandwidth-distance product in multimode fiber systems,” J. Lightwave Technol. 11(7), 1125–1131 (1993).
[CrossRef]

D. H. Sim, Y. Takushima, and Y. C. Chung, “High-speed multimode fiber transmission by using mode-field matched center-launching technique,” J. Lightwave Technol. 27(8), 1018–1026 (2009).
[CrossRef]

D. Donlagic and B. Culshaw, “Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber,” J. Lightwave Technol. 17(10), 1856–1868 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Other

W. Shieh, “OFDM for adaptive ultrahigh-speed optical networks,” Optical Fiber Communication Conference National Fiber Optic Engineers Conference OFC-NFOEC'2010, paper OWO1, San Diego, California, USA, 2010.

C. Emslie, “Polarization maintaining fibers,” in Specialty Optical Fibers Handbook, A. Méndez and T.F. Morse, eds. (Academic, 2007), pp. 243–277.

M. Faucher, and Y. K. Lizé, `”Mode field adaptation for high power fiber lasers,” Conference on Lasers and Electro-Optics, 2007, Paper CF17.

G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O. Bertran Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J. Dupuy, and S. Bigo, "Transmission of 16.4Tbit/s Capacity over 2,550km Using PDM QPSK Modulation Format and Coherent Receiver," in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP3.

H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, T. Yamada, and S. Kamei, "13.5-Tb/s (135 x 111-Gb/s/ch) No-Guard-Interval Coherent OFDM Transmission over 6,248 km Using SNR Maximized Second-Order DRA in the Extended L-Band," in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper PDPB5.

G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s transmission over transocenic distance, using large effective area fiber, hybrid raman-erbium amplification and coherent detection,” in Proc of OFC, San Diego, USA, 2009, Paper PDPB6.

A. H. Gnauck, P. J. Winver, S. Chanrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10x224-gb/s WDM transmission of 28-G baud PDM 16-QAM on a 50-Ghz Grid over 1,200 km of fiber,” in Proc of OFC 2010, Paper PDPB8.

X. Zhou, J. Yu, M. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, and R. Lingle, 64-Tb/s (640x107-Gb/s) PDM-36QAM transmission over 320 km using both pre- and post-transmission digital equalization,” in Proc. of OFC 2010, Paper PDPB9.

J.-X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Philipetskii, and N. S. And, Bergano, “Transmission of 96x100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608 km and 400% spectral efficiency over 4,368 km,” in Proc of OFC 2010, Paper PDPB10.

P. Nouchi, P. Sansonetti, S. Landais, G. Barre, C. Brehm, J. Y. Boiort, B. Perrin, J. J. Girard, and J. Auge, "Low-loss single-mode fiber with high nonlinear effective area," in Optical Fiber Communications Conference, Vol. 8 of 1995 OSA Technical Digest Series (Optical Society of America, 1995), paper ThH2.

A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agarwal, S. Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maywar, M. Movassaghi, X. Liu, C. Xu, X. Wei, and D. M. Gill, “2.5 tb/s (64 x 42.7 Gb/s) transmission over 40 x 100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans,” in Proc. of OFC 2002, Paper PD-FC2.

G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, and S. Bigo, “Transmission of 40Gb/s QPSK with coherent detection over ultra-long distance improved by nonlinearity mitigation,” in Proc. Eur. Conf. Opt. Commun. 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a) Setup used for imaging the higher-order modes supported by the few-mode fiber. b) Setup used for measuring the phase delay between the two spatial modes supported by the few-mode fiber. PC: polarization controller, PBS: polarizing beam splitter, SOA: semiconductor optical amplifier, OSA: optical spectrum analyzer

Fig. 2
Fig. 2

a) Intensity profile of the LP11 mode captured by the CCD. b) Optical spectrum measured by the OSA in Fig. 1b before (red, thick line) and after (blue, thin line) the few-mode fiber. The vertical scale is in arbitrary linear units.

Fig. 3
Fig. 3

Experimental setup for transmitting single channel 6 Gb/s BPSK data through 35-km long FMF.

Fig. 5
Fig. 5

Experimental setup for WDM transmission in few-mode fiber. The 35-km-long few-mode fiber is spliced to SMF on both ends and it is the only multimode element in the setup. SOA: semiconductor optical amplifier, PC: polarization controller, AOM: acousto-optic modulator.

Fig. 4
Fig. 4

(a) Back-to-back eye diagram with Q = 18.4 dB and (b) eye diagram after 35 km with Q = 18.6 dB.

Fig. 6
Fig. 6

(a) Back-to-back eye diagram with Q = 21.6 dB and (b) eye diagram after 1050 km with Q = 15.8 dB.

Metrics