Abstract

A series of practical tests of slow light (light with reduced group velocity) in saturable absorbers is proposed. These include experimental tests for saturable absorption, which can mimic slow light effects in saturable media, the dependence of slow light on the mutual coherence of pump and probe, since both slow and fast light effects can be simulated with incoherent sources, and the influence of polarization. The principal requirements for practical observation of spectral hole burning are reviewed and shown to be achievable for a wide range of saturable media with the narrow line sources now available.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Zapasskiĭ and G. G. Kozlov, “A saturable absorber, coherent population oscillations and slow light,” Opt. Spectrosc. 100(3), 419–424 (2006).
    [CrossRef]
  2. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005).
    [CrossRef] [PubMed]
  3. S. E. Schwarz and T. Y. Tan, “Wave interactions in saturable absorbers,” Appl. Phys. Lett. 10(1), 4–7 (1967).
    [CrossRef]
  4. L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud., “Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line,” Opt. Commun. 45(6), 416–419 (1983).
    [CrossRef]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
    [CrossRef] [PubMed]
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
    [CrossRef] [PubMed]
  7. P. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95(25), 253601 (2005).
    [CrossRef] [PubMed]
  8. S. Melle, O. G. Calderón, F. Carreño, E. Cabrera, M. A. Antón, and S. Jarabo, “Effect of ion concentration on slow light propagation in highly doped erbium fibers,” Opt. Commun. 279(1), 53–63 (2007).
    [CrossRef]
  9. B. Macke and B. Segard, “Slw light in saturable absorbers,” Phys. Rev. A 78(1), 013817 (2008).
    [CrossRef]
  10. A. C. Selden, “Slow light and saturable absorption,” Opt. Spectrosc. 106(6), 881–888 (2009).
    [CrossRef]
  11. P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
    [CrossRef] [PubMed]
  12. S. Stepanov and E. Hernández Hernández, “Controllable propagation of light pulses in Er-doped fibers with saturable absorption,” Opt. Lett. 33(19), 2242–2244 (2008).
    [CrossRef] [PubMed]
  13. A. C. Selden, “Nonlinear transmission of an optical signal,” Electron. Lett. 7(11), 287–288 (1971).
    [CrossRef]
  14. A. C. Selden, “Pulse transmission through a saturable absorber,” Br. J. Appl. Phys. 18(6), 743–748 (1967).
    [CrossRef]
  15. J. Rutman, “Characterization of Phase and Frequency Instabilities in Precision Frequency Source: Fifteen Years of Progress',” Proc. IEEE 66(9), 1048–1075 (1978).
    [CrossRef]
  16. F. Rohart, H. Dève, and B. Macke, “Saturated absorption line-width: influence of the source frequency noise,” Appl. Phys. B 39, 19–27 (1986).
    [CrossRef]
  17. G. Piredda and R. W. Boyd, “Slow light by means of coherent population oscillations: laser line-width effects,” J. Eur. Opt. Soc. 2, 07004 (2007).
    [CrossRef]
  18. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
    [CrossRef]
  19. V. Zapasskiĭ and G. Kozlov, “Incoherent “slow and fast light”,” Opt. Express 17(24), 22154–22162 (2009).
    [CrossRef] [PubMed]
  20. H. Shin, A. Schweinsberg, and R. W. Boyd, “Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier using a mutually incoherent background field,” Opt. Commun. 282(10), 2085–2087 (2009).
    [CrossRef]
  21. H. Wang, Y. Zhang, N. Wang, W. Yan, H. Tian, W. Qiu, and P. Yuan, “Observation of superluminal propagation at negative group velocity in C60 solution,” Appl. Phys. Lett. 90(12), 121107 (2007).
    [CrossRef]
  22. S.-W. Chiow, S. Herrmann, H. Müller, and S. Chu, “6W, 1 kHz linewidth, tunable continuous-wave near-infrared laser,” Opt. Express 17(7), 5246–5250 (2009).
    [CrossRef] [PubMed]
  23. W. Xue, Y. Chen, F. Öhman, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33, 1404–1406 (2009).
  24. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
    [CrossRef] [PubMed]
  25. M. S. Malcuit, R. W. Boyd, L. W. Hillman, J. Krasinski, and C. R. Stroud., “Saturation and inverse-saturation absorption line shapes in alexandrite,” J. Opt. Soc. Am. B 1(1), 73–75 (1984).
    [CrossRef]
  26. Z.-B. Liu, J.-G. Tian, W.-P. Zang, W.-Y. Zhou, C.-P. Zhang, J.-Y. Zheng, Y.-C. Zhou, and H. Xu, “Large optical nonlinearities of new organophosphorus fullerene derivatives,” Appl. Opt. 42(35), 7072–7076 (2003).
    [CrossRef] [PubMed]
  27. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
    [CrossRef] [PubMed]
  28. Y. N. Zhao, J. Zhang, A. Stejskal, T. Liu, V. Elman, Z. H. Lu, and L. J. Wang, “A vibration-insensitive optical cavity and absolute determination of its ultrahigh stability,” Opt. Express 17(11), 8970–8982 (2009).
    [CrossRef] [PubMed]
  29. J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008).
    [CrossRef]
  30. B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, “Reduction of timing jitter in a Q-Switched Nd:YAG laser by direct bleaching of a Cr4+:YAG saturable absorber,” Opt. Express 17(3), 1766–1771 (2009).
    [CrossRef] [PubMed]
  31. S.-W. Chiow, Q. Long, C. Vo, H. Müller, and S. Chu, “Extended-cavity diode lasers with tracked resonances,” Appl. Opt. 46(33), 7997–8001 (2007).
    [CrossRef] [PubMed]
  32. B. H. Soffer and B. B. McFarland, “Frequency locking and dye spectral hole burning in Q-spoiled lasers,” Appl. Phys. Lett. 8(7), 166–169 (1966).
    [CrossRef]
  33. R. Shakhmuratov, A. Rebane, P. Mégret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71(5), 053811 (2005).
    [CrossRef]
  34. A. C. Selden, “Analysis of the saturable absorber transmission equation,” J. Phys. D Appl. Phys. 3(12), 1935–1943 (1970).
    [CrossRef]
  35. C. S. Yelleswarapu, S. Laoui, R. Philip, and D. V. G. L. N. Rao, “Coherent population oscillations and superluminal light in a protein complex,” Opt. Express 16(6), 3844–3852 (2008).
    [CrossRef] [PubMed]

2009 (7)

2008 (5)

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008).
[CrossRef]

C. S. Yelleswarapu, S. Laoui, R. Philip, and D. V. G. L. N. Rao, “Coherent population oscillations and superluminal light in a protein complex,” Opt. Express 16(6), 3844–3852 (2008).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

S. Stepanov and E. Hernández Hernández, “Controllable propagation of light pulses in Er-doped fibers with saturable absorption,” Opt. Lett. 33(19), 2242–2244 (2008).
[CrossRef] [PubMed]

B. Macke and B. Segard, “Slw light in saturable absorbers,” Phys. Rev. A 78(1), 013817 (2008).
[CrossRef]

2007 (4)

S. Melle, O. G. Calderón, F. Carreño, E. Cabrera, M. A. Antón, and S. Jarabo, “Effect of ion concentration on slow light propagation in highly doped erbium fibers,” Opt. Commun. 279(1), 53–63 (2007).
[CrossRef]

G. Piredda and R. W. Boyd, “Slow light by means of coherent population oscillations: laser line-width effects,” J. Eur. Opt. Soc. 2, 07004 (2007).
[CrossRef]

H. Wang, Y. Zhang, N. Wang, W. Yan, H. Tian, W. Qiu, and P. Yuan, “Observation of superluminal propagation at negative group velocity in C60 solution,” Appl. Phys. Lett. 90(12), 121107 (2007).
[CrossRef]

S.-W. Chiow, Q. Long, C. Vo, H. Müller, and S. Chu, “Extended-cavity diode lasers with tracked resonances,” Appl. Opt. 46(33), 7997–8001 (2007).
[CrossRef] [PubMed]

2006 (1)

V. S. Zapasskiĭ and G. G. Kozlov, “A saturable absorber, coherent population oscillations and slow light,” Opt. Spectrosc. 100(3), 419–424 (2006).
[CrossRef]

2005 (4)

J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005).
[CrossRef] [PubMed]

P. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95(25), 253601 (2005).
[CrossRef] [PubMed]

R. Shakhmuratov, A. Rebane, P. Mégret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71(5), 053811 (2005).
[CrossRef]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (3)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Z.-B. Liu, J.-G. Tian, W.-P. Zang, W.-Y. Zhou, C.-P. Zhang, J.-Y. Zheng, Y.-C. Zhou, and H. Xu, “Large optical nonlinearities of new organophosphorus fullerene derivatives,” Appl. Opt. 42(35), 7072–7076 (2003).
[CrossRef] [PubMed]

1986 (1)

F. Rohart, H. Dève, and B. Macke, “Saturated absorption line-width: influence of the source frequency noise,” Appl. Phys. B 39, 19–27 (1986).
[CrossRef]

1984 (1)

1983 (1)

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud., “Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line,” Opt. Commun. 45(6), 416–419 (1983).
[CrossRef]

1978 (1)

J. Rutman, “Characterization of Phase and Frequency Instabilities in Precision Frequency Source: Fifteen Years of Progress',” Proc. IEEE 66(9), 1048–1075 (1978).
[CrossRef]

1971 (1)

A. C. Selden, “Nonlinear transmission of an optical signal,” Electron. Lett. 7(11), 287–288 (1971).
[CrossRef]

1970 (1)

A. C. Selden, “Analysis of the saturable absorber transmission equation,” J. Phys. D Appl. Phys. 3(12), 1935–1943 (1970).
[CrossRef]

1967 (2)

A. C. Selden, “Pulse transmission through a saturable absorber,” Br. J. Appl. Phys. 18(6), 743–748 (1967).
[CrossRef]

S. E. Schwarz and T. Y. Tan, “Wave interactions in saturable absorbers,” Appl. Phys. Lett. 10(1), 4–7 (1967).
[CrossRef]

1966 (1)

B. H. Soffer and B. B. McFarland, “Frequency locking and dye spectral hole burning in Q-spoiled lasers,” Appl. Phys. Lett. 8(7), 166–169 (1966).
[CrossRef]

1960 (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[CrossRef]

Alnis, J.

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008).
[CrossRef]

Antón, M. A.

S. Melle, O. G. Calderón, F. Carreño, E. Cabrera, M. A. Antón, and S. Jarabo, “Effect of ion concentration on slow light propagation in highly doped erbium fibers,” Opt. Commun. 279(1), 53–63 (2007).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

H. Shin, A. Schweinsberg, and R. W. Boyd, “Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier using a mutually incoherent background field,” Opt. Commun. 282(10), 2085–2087 (2009).
[CrossRef]

G. Piredda and R. W. Boyd, “Slow light by means of coherent population oscillations: laser line-width effects,” J. Eur. Opt. Soc. 2, 07004 (2007).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

M. S. Malcuit, R. W. Boyd, L. W. Hillman, J. Krasinski, and C. R. Stroud., “Saturation and inverse-saturation absorption line shapes in alexandrite,” J. Opt. Soc. Am. B 1(1), 73–75 (1984).
[CrossRef]

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud., “Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line,” Opt. Commun. 45(6), 416–419 (1983).
[CrossRef]

Cabrera, E.

S. Melle, O. G. Calderón, F. Carreño, E. Cabrera, M. A. Antón, and S. Jarabo, “Effect of ion concentration on slow light propagation in highly doped erbium fibers,” Opt. Commun. 279(1), 53–63 (2007).
[CrossRef]

Calderón, O. G.

S. Melle, O. G. Calderón, F. Carreño, E. Cabrera, M. A. Antón, and S. Jarabo, “Effect of ion concentration on slow light propagation in highly doped erbium fibers,” Opt. Commun. 279(1), 53–63 (2007).
[CrossRef]

Carreño, F.

S. Melle, O. G. Calderón, F. Carreño, E. Cabrera, M. A. Antón, and S. Jarabo, “Effect of ion concentration on slow light propagation in highly doped erbium fibers,” Opt. Commun. 279(1), 53–63 (2007).
[CrossRef]

Chang, S.-W.

Chang-Hasnain, C. J.

Chen, Y.

Chiow, S.-W.

Chu, S.

Chuang, S.-L.

Cole, B.

Dève, H.

F. Rohart, H. Dève, and B. Macke, “Saturated absorption line-width: influence of the source frequency noise,” Appl. Phys. B 39, 19–27 (1986).
[CrossRef]

Elman, V.

Fraval, E.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

Goldberg, L.

Hänsch, T. W.

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008).
[CrossRef]

Hays, A.

Hernández Hernández, E.

Herrmann, S.

Hillman, L. W.

M. S. Malcuit, R. W. Boyd, L. W. Hillman, J. Krasinski, and C. R. Stroud., “Saturation and inverse-saturation absorption line shapes in alexandrite,” J. Opt. Soc. Am. B 1(1), 73–75 (1984).
[CrossRef]

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud., “Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line,” Opt. Commun. 45(6), 416–419 (1983).
[CrossRef]

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

Jarabo, S.

S. Melle, O. G. Calderón, F. Carreño, E. Cabrera, M. A. Antón, and S. Jarabo, “Effect of ion concentration on slow light propagation in highly doped erbium fibers,” Opt. Commun. 279(1), 53–63 (2007).
[CrossRef]

Kjær, R.

Kolachevsky, N.

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008).
[CrossRef]

Kozlov, G.

Kozlov, G. G.

V. S. Zapasskiĭ and G. G. Kozlov, “A saturable absorber, coherent population oscillations and slow light,” Opt. Spectrosc. 100(3), 419–424 (2006).
[CrossRef]

Krasinski, J.

M. S. Malcuit, R. W. Boyd, L. W. Hillman, J. Krasinski, and C. R. Stroud., “Saturation and inverse-saturation absorption line shapes in alexandrite,” J. Opt. Soc. Am. B 1(1), 73–75 (1984).
[CrossRef]

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud., “Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line,” Opt. Commun. 45(6), 416–419 (1983).
[CrossRef]

Ku, P.-C.

Laoui, S.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Li, T.

Liu, T.

Liu, Z.-B.

Long, Q.

Longdell, J. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

Lu, Z. H.

Macke, B.

B. Macke and B. Segard, “Slw light in saturable absorbers,” Phys. Rev. A 78(1), 013817 (2008).
[CrossRef]

F. Rohart, H. Dève, and B. Macke, “Saturated absorption line-width: influence of the source frequency noise,” Appl. Phys. B 39, 19–27 (1986).
[CrossRef]

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[CrossRef]

Malcuit, M. S.

Maleki, L.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

Manson, N. B.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

Matveev, A.

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008).
[CrossRef]

McFarland, B. B.

B. H. Soffer and B. B. McFarland, “Frequency locking and dye spectral hole burning in Q-spoiled lasers,” Appl. Phys. Lett. 8(7), 166–169 (1966).
[CrossRef]

McIntosh, C.

Mégret, P.

R. Shakhmuratov, A. Rebane, P. Mégret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71(5), 053811 (2005).
[CrossRef]

Melle, S.

S. Melle, O. G. Calderón, F. Carreño, E. Cabrera, M. A. Antón, and S. Jarabo, “Effect of ion concentration on slow light propagation in highly doped erbium fibers,” Opt. Commun. 279(1), 53–63 (2007).
[CrossRef]

Mørk, J.

Müller, H.

Odeurs, J.

R. Shakhmuratov, A. Rebane, P. Mégret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71(5), 053811 (2005).
[CrossRef]

Öhman, F.

Palinginis, P.

Philip, R.

Piredda, G.

G. Piredda and R. W. Boyd, “Slow light by means of coherent population oscillations: laser line-width effects,” J. Eur. Opt. Soc. 2, 07004 (2007).
[CrossRef]

Qiu, W.

H. Wang, Y. Zhang, N. Wang, W. Yan, H. Tian, W. Qiu, and P. Yuan, “Observation of superluminal propagation at negative group velocity in C60 solution,” Appl. Phys. Lett. 90(12), 121107 (2007).
[CrossRef]

Rao, D. V. G. L. N.

C. S. Yelleswarapu, S. Laoui, R. Philip, and D. V. G. L. N. Rao, “Coherent population oscillations and superluminal light in a protein complex,” Opt. Express 16(6), 3844–3852 (2008).
[CrossRef] [PubMed]

P. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95(25), 253601 (2005).
[CrossRef] [PubMed]

Rebane, A.

R. Shakhmuratov, A. Rebane, P. Mégret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71(5), 053811 (2005).
[CrossRef]

Rohart, F.

F. Rohart, H. Dève, and B. Macke, “Saturated absorption line-width: influence of the source frequency noise,” Appl. Phys. B 39, 19–27 (1986).
[CrossRef]

Rutman, J.

J. Rutman, “Characterization of Phase and Frequency Instabilities in Precision Frequency Source: Fifteen Years of Progress',” Proc. IEEE 66(9), 1048–1075 (1978).
[CrossRef]

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

Schilling, B. W.

Schwarz, S. E.

S. E. Schwarz and T. Y. Tan, “Wave interactions in saturable absorbers,” Appl. Phys. Lett. 10(1), 4–7 (1967).
[CrossRef]

Schweinsberg, A.

H. Shin, A. Schweinsberg, and R. W. Boyd, “Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier using a mutually incoherent background field,” Opt. Commun. 282(10), 2085–2087 (2009).
[CrossRef]

Sedgwick, F.

Segard, B.

B. Macke and B. Segard, “Slw light in saturable absorbers,” Phys. Rev. A 78(1), 013817 (2008).
[CrossRef]

Seidel, D.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

Selden, A. C.

A. C. Selden, “Slow light and saturable absorption,” Opt. Spectrosc. 106(6), 881–888 (2009).
[CrossRef]

A. C. Selden, “Nonlinear transmission of an optical signal,” Electron. Lett. 7(11), 287–288 (1971).
[CrossRef]

A. C. Selden, “Analysis of the saturable absorber transmission equation,” J. Phys. D Appl. Phys. 3(12), 1935–1943 (1970).
[CrossRef]

A. C. Selden, “Pulse transmission through a saturable absorber,” Br. J. Appl. Phys. 18(6), 743–748 (1967).
[CrossRef]

Sellars, M. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

Shakhmuratov, R.

R. Shakhmuratov, A. Rebane, P. Mégret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71(5), 053811 (2005).
[CrossRef]

Shin, H.

H. Shin, A. Schweinsberg, and R. W. Boyd, “Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier using a mutually incoherent background field,” Opt. Commun. 282(10), 2085–2087 (2009).
[CrossRef]

Soffer, B. H.

B. H. Soffer and B. B. McFarland, “Frequency locking and dye spectral hole burning in Q-spoiled lasers,” Appl. Phys. Lett. 8(7), 166–169 (1966).
[CrossRef]

Solomatine, I.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

Stejskal, A.

Stepanov, S.

Stroud, C. R.

M. S. Malcuit, R. W. Boyd, L. W. Hillman, J. Krasinski, and C. R. Stroud., “Saturation and inverse-saturation absorption line shapes in alexandrite,” J. Opt. Soc. Am. B 1(1), 73–75 (1984).
[CrossRef]

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud., “Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line,” Opt. Commun. 45(6), 416–419 (1983).
[CrossRef]

Tan, T. Y.

S. E. Schwarz and T. Y. Tan, “Wave interactions in saturable absorbers,” Appl. Phys. Lett. 10(1), 4–7 (1967).
[CrossRef]

Tian, H.

H. Wang, Y. Zhang, N. Wang, W. Yan, H. Tian, W. Qiu, and P. Yuan, “Observation of superluminal propagation at negative group velocity in C60 solution,” Appl. Phys. Lett. 90(12), 121107 (2007).
[CrossRef]

Tian, J.-G.

Trussell, C. W.

Udem, Th.

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008).
[CrossRef]

van der Poel, M.

Vo, C.

Wang, H.

H. Wang, Y. Zhang, N. Wang, W. Yan, H. Tian, W. Qiu, and P. Yuan, “Observation of superluminal propagation at negative group velocity in C60 solution,” Appl. Phys. Lett. 90(12), 121107 (2007).
[CrossRef]

P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
[CrossRef] [PubMed]

Wang, L. J.

Wang, N.

H. Wang, Y. Zhang, N. Wang, W. Yan, H. Tian, W. Qiu, and P. Yuan, “Observation of superluminal propagation at negative group velocity in C60 solution,” Appl. Phys. Lett. 90(12), 121107 (2007).
[CrossRef]

Wu, P.

P. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95(25), 253601 (2005).
[CrossRef] [PubMed]

Xu, H.

Xue, W.

Yan, W.

H. Wang, Y. Zhang, N. Wang, W. Yan, H. Tian, W. Qiu, and P. Yuan, “Observation of superluminal propagation at negative group velocity in C60 solution,” Appl. Phys. Lett. 90(12), 121107 (2007).
[CrossRef]

Yelleswarapu, C. S.

Yuan, P.

H. Wang, Y. Zhang, N. Wang, W. Yan, H. Tian, W. Qiu, and P. Yuan, “Observation of superluminal propagation at negative group velocity in C60 solution,” Appl. Phys. Lett. 90(12), 121107 (2007).
[CrossRef]

Yvind, K.

Zang, W.-P.

Zapasskii, V.

Zapasskii, V. S.

V. S. Zapasskiĭ and G. G. Kozlov, “A saturable absorber, coherent population oscillations and slow light,” Opt. Spectrosc. 100(3), 419–424 (2006).
[CrossRef]

Zhang, C.-P.

Zhang, J.

Zhang, Y.

H. Wang, Y. Zhang, N. Wang, W. Yan, H. Tian, W. Qiu, and P. Yuan, “Observation of superluminal propagation at negative group velocity in C60 solution,” Appl. Phys. Lett. 90(12), 121107 (2007).
[CrossRef]

Zhao, Y. N.

Zheng, J.-Y.

Zhou, W.-Y.

Zhou, Y.-C.

Appl. Opt. (2)

Appl. Phys. B (1)

F. Rohart, H. Dève, and B. Macke, “Saturated absorption line-width: influence of the source frequency noise,” Appl. Phys. B 39, 19–27 (1986).
[CrossRef]

Appl. Phys. Lett. (3)

S. E. Schwarz and T. Y. Tan, “Wave interactions in saturable absorbers,” Appl. Phys. Lett. 10(1), 4–7 (1967).
[CrossRef]

B. H. Soffer and B. B. McFarland, “Frequency locking and dye spectral hole burning in Q-spoiled lasers,” Appl. Phys. Lett. 8(7), 166–169 (1966).
[CrossRef]

H. Wang, Y. Zhang, N. Wang, W. Yan, H. Tian, W. Qiu, and P. Yuan, “Observation of superluminal propagation at negative group velocity in C60 solution,” Appl. Phys. Lett. 90(12), 121107 (2007).
[CrossRef]

Br. J. Appl. Phys. (1)

A. C. Selden, “Pulse transmission through a saturable absorber,” Br. J. Appl. Phys. 18(6), 743–748 (1967).
[CrossRef]

Electron. Lett. (1)

A. C. Selden, “Nonlinear transmission of an optical signal,” Electron. Lett. 7(11), 287–288 (1971).
[CrossRef]

J. Eur. Opt. Soc. (1)

G. Piredda and R. W. Boyd, “Slow light by means of coherent population oscillations: laser line-width effects,” J. Eur. Opt. Soc. 2, 07004 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

A. C. Selden, “Analysis of the saturable absorber transmission equation,” J. Phys. D Appl. Phys. 3(12), 1935–1943 (1970).
[CrossRef]

Nature (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960).
[CrossRef]

Opt. Commun. (3)

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud., “Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line,” Opt. Commun. 45(6), 416–419 (1983).
[CrossRef]

S. Melle, O. G. Calderón, F. Carreño, E. Cabrera, M. A. Antón, and S. Jarabo, “Effect of ion concentration on slow light propagation in highly doped erbium fibers,” Opt. Commun. 279(1), 53–63 (2007).
[CrossRef]

H. Shin, A. Schweinsberg, and R. W. Boyd, “Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier using a mutually incoherent background field,” Opt. Commun. 282(10), 2085–2087 (2009).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Opt. Spectrosc. (2)

A. C. Selden, “Slow light and saturable absorption,” Opt. Spectrosc. 106(6), 881–888 (2009).
[CrossRef]

V. S. Zapasskiĭ and G. G. Kozlov, “A saturable absorber, coherent population oscillations and slow light,” Opt. Spectrosc. 100(3), 419–424 (2006).
[CrossRef]

Phys. Rev. A (3)

B. Macke and B. Segard, “Slw light in saturable absorbers,” Phys. Rev. A 78(1), 013817 (2008).
[CrossRef]

J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008).
[CrossRef]

R. Shakhmuratov, A. Rebane, P. Mégret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71(5), 053811 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008).
[CrossRef] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

P. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95(25), 253601 (2005).
[CrossRef] [PubMed]

Proc. IEEE (1)

J. Rutman, “Characterization of Phase and Frequency Instabilities in Precision Frequency Source: Fifteen Years of Progress',” Proc. IEEE 66(9), 1048–1075 (1978).
[CrossRef]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Coherent hole burned in a homogeneously broadened absorption line. Attenuation A(ν) vs detuning Δν = ν-ν0 for nonlinear absorption with relaxation time τs = 10 ms. The hole broadens and the background absorption decreases as the pump intensity parameter β increases

Fig. 2
Fig. 2

Advance of transmitted signal βtr (thick curve) during recovery of absorption following termination of rectangular pump pulse with intensity saturation parameter βp = 5. The intensity parameter of the weak probe signal is βs = 0.005. The dynamic transmission function u(τ) = ln(T(τ)/T0); the initial transmittance T0 = 0.001.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ P 2 = Δ P 2 ( 0 ) [ 1 18 5 Δ P 1 ( 0 ) P s ( 0 ) ( 1 + 1 1 + τ s 2 ( ω 1 ω 2 ) 2 ) ]
K ( ω ) = 1 + β + i ω τ s 1 + β T s + i ω τ s
τ d = τ s β 1 + β α 0 L ( 1 + β ) 2 + ( ω m τ s ) 2

Metrics