Abstract

We report on an integrated all-glass pump combiner for ytterbium-doped high power fiber lasers. The combining of multiple pump fibers with an active double clad fiber for high power amplification was successfully achieved by splicing them to a dichromatically coated planar convex lens. The measured coupling efficiency of such a combining scheme was typically in excess of 80%, with 86.5% achieved in maximum. Theoretical analysis is discussed in order to get optimized parameters and to consider the scaling of this type of coupler to higher average powers.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Side-pump combiner for all-fiber monolithic fiber lasers and amplifiers

Cesar Jauregui, Steffen Böhme, Georgios Wenetiadis, Jens Limpert, and Andreas Tünnermann
J. Opt. Soc. Am. B 27(5) 1011-1015 (2010)

Combined supercontinuum source with >200 W power using a 3 × 1 broadband fiber power combiner

H. Zhou, A. Jin, Z. Chen, B. Zhang, X. Zhou, S. Chen, J. Hou, and J. Chen
Opt. Lett. 40(16) 3810-3813 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The Rising Power of Fiber Lasers and Amplifiers,” J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
    [Crossref]
  2. A. Tünnermann, J. Limpert, and S. Nolte, “Industrial perspectives of ultrafast fiber lasers,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper TF1_1.
  3. V. P. Gapontsev, “Penetration of fiber lasers into industrial market”, presented at Fiber Lasers V: Technology, Systems, and Applications, Photonics West, San Jose, paper 6873–01, (2008).
  4. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
    [Crossref] [PubMed]
  5. D. J. Rippin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett. 31(25), 2204–2205 (1995).
    [Crossref]
  6. J. P. Koplow, S. W. Moore, and A. V. Kliner, “A new method for side pumping of double clad fiber sources,” J. Quant. Electron. 39(4), 529–540 (2003).
    [Crossref]
  7. J. Xu, J. Lu, G. Kumar, J. Lu, and K. Ueda, “A non-fused fiber coupler for side-pumping of double-clad fiber lasers,” Opt. Commun. 220(4-6), 389–395 (2003).
    [Crossref]
  8. C. Jauregui-Misas, S. Böhme, J. Limpert, and A. Tünnermann, “All-fiber side pump combiner for high-power fiber lasers and amplifiers,” Photonic West, Fiber Lasers VII: Technology, Systems, and Applications, Proceedings of SPIE Volume 7580, Paper 7580–49 (2010).
  9. F. Gonthier, “Method and Device for optically coupling optical fibers, “ International Patent Application WO 2008/083482.
  10. D. J. Digiovanni, and A. J. Stentz, “Tapered fiber bundles for coupling light and out of cladding-pumped fiber devices,” U.S. patent 5,864,644 (1999).
  11. F. Gonthier, L. Martineau, F. Seguin, A. Villeneuve, M. Faucher, N. Azami, and M. Garneau, “Optical coupler comprising multimode fibers and method of making the same,” U.S. patent 7,046,875 (2006).
  12. M. Faucher, E. Villeneuve, B. Sevigny, A. Wetter, R. Perreault, Y. Lize, and N. Holehouse, “High power monolithically integrated all-fiber laser design using single-chip multimode pumps for high reliability operation,” Proc. of SPIE 6873, (2008).
  13. V. Gapontsev, and I. Samartsev, “Coupling arrangement between a multi-mode light source and an optical fiber through an intermediate optical fiber length,” U.S. patent 5,999,673 (1999).
  14. N. L. J. Albinsson, D. M. Kevan, T. P. William, and G. A. Borisovich, I. Morten, Z. M. Nickolaos, P. D. Neil, “Multi-fibre arrangement for high power fibre lasers and amplifiers,” US Patent No. 7,221,822.
  15. T. Nikolajsen, “Optical coupler device, methods of their production and use,” Patent Application WO/2007/006317.
  16. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009).
    [Crossref] [PubMed]
  17. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
    [Crossref] [PubMed]
  18. R. Eberhardt, E. Beckert, T. Burkhardt, S. Böhme, T. Schreiber, and A. Tünnermann, “Optoelectronic Packaging based on Laser Joining,” Proc. SPIE 6880, 68800G (2008).
    [Crossref]
  19. J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
    [Crossref] [PubMed]

2010 (1)

2009 (2)

2008 (1)

R. Eberhardt, E. Beckert, T. Burkhardt, S. Böhme, T. Schreiber, and A. Tünnermann, “Optoelectronic Packaging based on Laser Joining,” Proc. SPIE 6880, 68800G (2008).
[Crossref]

2007 (1)

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The Rising Power of Fiber Lasers and Amplifiers,” J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

2003 (3)

J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
[Crossref] [PubMed]

J. P. Koplow, S. W. Moore, and A. V. Kliner, “A new method for side pumping of double clad fiber sources,” J. Quant. Electron. 39(4), 529–540 (2003).
[Crossref]

J. Xu, J. Lu, G. Kumar, J. Lu, and K. Ueda, “A non-fused fiber coupler for side-pumping of double-clad fiber lasers,” Opt. Commun. 220(4-6), 389–395 (2003).
[Crossref]

1995 (1)

D. J. Rippin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett. 31(25), 2204–2205 (1995).
[Crossref]

Ancona, A.

Andersen, T. V.

Beckert, E.

R. Eberhardt, E. Beckert, T. Burkhardt, S. Böhme, T. Schreiber, and A. Tünnermann, “Optoelectronic Packaging based on Laser Joining,” Proc. SPIE 6880, 68800G (2008).
[Crossref]

Böhme, S.

R. Eberhardt, E. Beckert, T. Burkhardt, S. Böhme, T. Schreiber, and A. Tünnermann, “Optoelectronic Packaging based on Laser Joining,” Proc. SPIE 6880, 68800G (2008).
[Crossref]

Brückner, F.

Burkhardt, T.

R. Eberhardt, E. Beckert, T. Burkhardt, S. Böhme, T. Schreiber, and A. Tünnermann, “Optoelectronic Packaging based on Laser Joining,” Proc. SPIE 6880, 68800G (2008).
[Crossref]

Clausnitzer, T.

Döring, S.

Eberhardt, R.

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009).
[Crossref] [PubMed]

R. Eberhardt, E. Beckert, T. Burkhardt, S. Böhme, T. Schreiber, and A. Tünnermann, “Optoelectronic Packaging based on Laser Joining,” Proc. SPIE 6880, 68800G (2008).
[Crossref]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The Rising Power of Fiber Lasers and Amplifiers,” J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Eidam, T.

Gabler, T.

Goldberg, L.

D. J. Rippin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett. 31(25), 2204–2205 (1995).
[Crossref]

Gowin, M.

Guyenot, V.

Hanf, S.

Jauregui, C.

Jung, M.

Kliner, A. V.

J. P. Koplow, S. W. Moore, and A. V. Kliner, “A new method for side pumping of double clad fiber sources,” J. Quant. Electron. 39(4), 529–540 (2003).
[Crossref]

Klingebiel, S.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The Rising Power of Fiber Lasers and Amplifiers,” J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Koplow, J. P.

J. P. Koplow, S. W. Moore, and A. V. Kliner, “A new method for side pumping of double clad fiber sources,” J. Quant. Electron. 39(4), 529–540 (2003).
[Crossref]

Kumar, G.

J. Xu, J. Lu, G. Kumar, J. Lu, and K. Ueda, “A non-fused fiber coupler for side-pumping of double-clad fiber lasers,” Opt. Commun. 220(4-6), 389–395 (2003).
[Crossref]

Liem, A.

Limpert, J.

Lu, J.

J. Xu, J. Lu, G. Kumar, J. Lu, and K. Ueda, “A non-fused fiber coupler for side-pumping of double-clad fiber lasers,” Opt. Commun. 220(4-6), 389–395 (2003).
[Crossref]

J. Xu, J. Lu, G. Kumar, J. Lu, and K. Ueda, “A non-fused fiber coupler for side-pumping of double-clad fiber lasers,” Opt. Commun. 220(4-6), 389–395 (2003).
[Crossref]

Ludewigt, K.

Moore, S. W.

J. P. Koplow, S. W. Moore, and A. V. Kliner, “A new method for side pumping of double clad fiber sources,” J. Quant. Electron. 39(4), 529–540 (2003).
[Crossref]

Nolte, S.

Peschel, T.

Rippin, D. J.

D. J. Rippin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett. 31(25), 2204–2205 (1995).
[Crossref]

Röser, F.

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
[Crossref] [PubMed]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The Rising Power of Fiber Lasers and Amplifiers,” J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Schmidt, O.

Schreiber, T.

Seise, E.

ten Have, E.

Tsybin, I.

Tünnermann, A.

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[Crossref] [PubMed]

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009).
[Crossref] [PubMed]

A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, and A. Tünnermann, “Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers,” Opt. Lett. 34(21), 3304–3306 (2009).
[Crossref] [PubMed]

R. Eberhardt, E. Beckert, T. Burkhardt, S. Böhme, T. Schreiber, and A. Tünnermann, “Optoelectronic Packaging based on Laser Joining,” Proc. SPIE 6880, 68800G (2008).
[Crossref]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The Rising Power of Fiber Lasers and Amplifiers,” J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11(22), 2982–2990 (2003).
[Crossref] [PubMed]

Ueda, K.

J. Xu, J. Lu, G. Kumar, J. Lu, and K. Ueda, “A non-fused fiber coupler for side-pumping of double-clad fiber lasers,” Opt. Commun. 220(4-6), 389–395 (2003).
[Crossref]

Wirth, C.

Xu, J.

J. Xu, J. Lu, G. Kumar, J. Lu, and K. Ueda, “A non-fused fiber coupler for side-pumping of double-clad fiber lasers,” Opt. Commun. 220(4-6), 389–395 (2003).
[Crossref]

Zellmer, H.

Electron. Lett. (1)

D. J. Rippin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett. 31(25), 2204–2205 (1995).
[Crossref]

J. Quant. Electron. (1)

J. P. Koplow, S. W. Moore, and A. V. Kliner, “A new method for side pumping of double clad fiber sources,” J. Quant. Electron. 39(4), 529–540 (2003).
[Crossref]

J. Sel. Top. Quantum Electron. (1)

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The Rising Power of Fiber Lasers and Amplifiers,” J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[Crossref]

Opt. Commun. (1)

J. Xu, J. Lu, G. Kumar, J. Lu, and K. Ueda, “A non-fused fiber coupler for side-pumping of double-clad fiber lasers,” Opt. Commun. 220(4-6), 389–395 (2003).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (1)

R. Eberhardt, E. Beckert, T. Burkhardt, S. Böhme, T. Schreiber, and A. Tünnermann, “Optoelectronic Packaging based on Laser Joining,” Proc. SPIE 6880, 68800G (2008).
[Crossref]

Other (10)

A. Tünnermann, J. Limpert, and S. Nolte, “Industrial perspectives of ultrafast fiber lasers,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper TF1_1.

V. P. Gapontsev, “Penetration of fiber lasers into industrial market”, presented at Fiber Lasers V: Technology, Systems, and Applications, Photonics West, San Jose, paper 6873–01, (2008).

C. Jauregui-Misas, S. Böhme, J. Limpert, and A. Tünnermann, “All-fiber side pump combiner for high-power fiber lasers and amplifiers,” Photonic West, Fiber Lasers VII: Technology, Systems, and Applications, Proceedings of SPIE Volume 7580, Paper 7580–49 (2010).

F. Gonthier, “Method and Device for optically coupling optical fibers, “ International Patent Application WO 2008/083482.

D. J. Digiovanni, and A. J. Stentz, “Tapered fiber bundles for coupling light and out of cladding-pumped fiber devices,” U.S. patent 5,864,644 (1999).

F. Gonthier, L. Martineau, F. Seguin, A. Villeneuve, M. Faucher, N. Azami, and M. Garneau, “Optical coupler comprising multimode fibers and method of making the same,” U.S. patent 7,046,875 (2006).

M. Faucher, E. Villeneuve, B. Sevigny, A. Wetter, R. Perreault, Y. Lize, and N. Holehouse, “High power monolithically integrated all-fiber laser design using single-chip multimode pumps for high reliability operation,” Proc. of SPIE 6873, (2008).

V. Gapontsev, and I. Samartsev, “Coupling arrangement between a multi-mode light source and an optical fiber through an intermediate optical fiber length,” U.S. patent 5,999,673 (1999).

N. L. J. Albinsson, D. M. Kevan, T. P. William, and G. A. Borisovich, I. Morten, Z. M. Nickolaos, P. D. Neil, “Multi-fibre arrangement for high power fibre lasers and amplifiers,” US Patent No. 7,221,822.

T. Nikolajsen, “Optical coupler device, methods of their production and use,” Patent Application WO/2007/006317.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of the monolithic all-glass pump combiner; (a) Side view of the schematic diagram; (b) Front view image of the combined fiber end-facets.
Fig. 2
Fig. 2 Contour plot of the pump core diameter given in µm as a function of the NA of the pump fibers and the focal length of the lens (end-cap thickness) in order to get 100% coupling efficiency for a fiber in the center of the lens.
Fig. 3
Fig. 3 The boundaries of the optimized parameter range in terms of the radial separation between pump fiber center and PCF center. Please see text for details.
Fig. 4
Fig. 4 Microscope images of the packaged fibers; (a) active fiber surrounded by multiple pump fibers; (b) side view image of the packaged fibers before removing the shrink tube.
Fig. 5
Fig. 5 Photograph of a fabricated all-glass pump combiner; spliced front view image (left) and spliced side view image (right).
Fig. 6
Fig. 6 Actual dimensions (R = radius, H = thickness, B = length) of the end-cap lens and raytracing of the pump light coupling.
Fig. 7
Fig. 7 Measured coupling power versus launched pump power.
Fig. 8
Fig. 8 (a) Test arrangement of coupling efficiency for different pump fiber separations, (b) schematic drawing of the maximum distance of pump fiber positions given by the coupler design.
Fig. 9
Fig. 9 Temperature distribution in the fiber bundle. The embedding medium is air (a) or acrylate coating (b).
Fig. 10
Fig. 10 Thermal flux distribution in a 90° segment of the outer region of a fiber bundle embedded in air.

Metrics