Abstract

We observe both superluminal and slow light propagation simultaneously in a nested fiber ring resonator. The two outputs of the resonator exhibit different absorption characteristics that produce opposite dispersion performance. The transmission spectra of two outputs are demonstrated experimentally for a variety of coupler settings. In particular, the group delays of the resonator for various values of the coupling coefficients are demonstrated theoretically and experimentally. We also discuss potential applications of the resonator.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Ku, C. Chang-Hasnain, and S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38(24), 1581–1583 (2002).
    [CrossRef]
  2. A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33(20), 2389–2391 (2008).
    [CrossRef] [PubMed]
  3. Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007).
    [CrossRef]
  4. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  5. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
    [CrossRef] [PubMed]
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
    [CrossRef] [PubMed]
  7. J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
    [CrossRef] [PubMed]
  8. M. González-Herráez, K.-Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
    [CrossRef]
  9. S. Riyopoulos, “Slow light waves at sonic propagation speed in active photonic lattices,” Phys. Rev. A 75(1), 013801 (2007).
    [CrossRef]
  10. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
    [CrossRef]
  11. Q. F. Xu, J. Shakya, and M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006).
    [CrossRef] [PubMed]
  12. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
    [CrossRef]
  13. J. E. Heebner, A. Vincent Wong, R. W. Schweinsberg, Boyd, and D. J. Jackson, “Optical Transmission Characteristics of Fiber Ring Resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
    [CrossRef]
  14. K. Totsuka and M. Tomita, “Observation of fast light in Mie scattering processes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4), 045602 (2006).
    [CrossRef] [PubMed]
  15. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
    [CrossRef] [PubMed]
  16. D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q.-H. Park, H. Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264(1), 163–168 (2006).
    [CrossRef]
  17. C. Fietz and G. Shvets, “Simultaneous fast and slow light in microring resonators,” Opt. Lett. 32(24), 3480–3482 (2007).
    [CrossRef] [PubMed]
  18. D. Solli, R. Y. Chiao, and J. M. Hickmann, “Superluminal effects and negative group delays in electronics, and their applications,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 056601 (2002).
    [CrossRef]
  19. D. D. Smith, H. Chang, and K. A. Fuller, “Whispering-gallery mode splitting in coupled microresonators,” J. Opt. Soc. Am. B 20(9), 1967–1974 (2003).
    [CrossRef]
  20. X. Zhang, D. Huang, and X. Zhang, “Transmission characteristics of dual microring resonators coupled via 3x3 couplers,” Opt. Express 15(21), 13557–13573 (2007).
    [CrossRef] [PubMed]

2008 (1)

2007 (5)

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007).
[CrossRef]

S. Riyopoulos, “Slow light waves at sonic propagation speed in active photonic lattices,” Phys. Rev. A 75(1), 013801 (2007).
[CrossRef]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

C. Fietz and G. Shvets, “Simultaneous fast and slow light in microring resonators,” Opt. Lett. 32(24), 3480–3482 (2007).
[CrossRef] [PubMed]

X. Zhang, D. Huang, and X. Zhang, “Transmission characteristics of dual microring resonators coupled via 3x3 couplers,” Opt. Express 15(21), 13557–13573 (2007).
[CrossRef] [PubMed]

2006 (3)

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q.-H. Park, H. Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264(1), 163–168 (2006).
[CrossRef]

Q. F. Xu, J. Shakya, and M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006).
[CrossRef] [PubMed]

K. Totsuka and M. Tomita, “Observation of fast light in Mie scattering processes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4), 045602 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[CrossRef] [PubMed]

M. González-Herráez, K.-Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[CrossRef]

2004 (3)

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
[CrossRef] [PubMed]

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

J. E. Heebner, A. Vincent Wong, R. W. Schweinsberg, Boyd, and D. J. Jackson, “Optical Transmission Characteristics of Fiber Ring Resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

D. D. Smith, H. Chang, and K. A. Fuller, “Whispering-gallery mode splitting in coupled microresonators,” J. Opt. Soc. Am. B 20(9), 1967–1974 (2003).
[CrossRef]

2002 (2)

P. Ku, C. Chang-Hasnain, and S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38(24), 1581–1583 (2002).
[CrossRef]

D. Solli, R. Y. Chiao, and J. M. Hickmann, “Superluminal effects and negative group delays in electronics, and their applications,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 056601 (2002).
[CrossRef]

1999 (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Boyd,

J. E. Heebner, A. Vincent Wong, R. W. Schweinsberg, Boyd, and D. J. Jackson, “Optical Transmission Characteristics of Fiber Ring Resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Boyd, R. W.

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007).
[CrossRef]

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q.-H. Park, H. Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264(1), 163–168 (2006).
[CrossRef]

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Camacho, R. M.

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007).
[CrossRef]

Chang, H.

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q.-H. Park, H. Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264(1), 163–168 (2006).
[CrossRef]

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

D. D. Smith, H. Chang, and K. A. Fuller, “Whispering-gallery mode splitting in coupled microresonators,” J. Opt. Soc. Am. B 20(9), 1967–1974 (2003).
[CrossRef]

Chang, S. W.

Chang-Hasnain, C.

P. Ku, C. Chang-Hasnain, and S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38(24), 1581–1583 (2002).
[CrossRef]

Chang-Hasnain, C. J.

Chiao, R. Y.

D. Solli, R. Y. Chiao, and J. M. Hickmann, “Superluminal effects and negative group delays in electronics, and their applications,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 056601 (2002).
[CrossRef]

Chuang, S.

P. Ku, C. Chang-Hasnain, and S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38(24), 1581–1583 (2002).
[CrossRef]

Chuang, S. L.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Ferrari, C.

Fietz, C.

Fuller, K. A.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

D. D. Smith, H. Chang, and K. A. Fuller, “Whispering-gallery mode splitting in coupled microresonators,” J. Opt. Soc. Am. B 20(9), 1967–1974 (2003).
[CrossRef]

Gaeta, A.

Gehring, G.

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q.-H. Park, H. Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264(1), 163–168 (2006).
[CrossRef]

González-Herráez, M.

M. González-Herráez, K.-Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Heebner, J. E.

J. E. Heebner, A. Vincent Wong, R. W. Schweinsberg, Boyd, and D. J. Jackson, “Optical Transmission Characteristics of Fiber Ring Resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Hickmann, J. M.

D. Solli, R. Y. Chiao, and J. M. Hickmann, “Superluminal effects and negative group delays in electronics, and their applications,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 056601 (2002).
[CrossRef]

Howell, J. C.

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007).
[CrossRef]

Huang, D.

Jackson, D. J.

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q.-H. Park, H. Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264(1), 163–168 (2006).
[CrossRef]

J. E. Heebner, A. Vincent Wong, R. W. Schweinsberg, Boyd, and D. J. Jackson, “Optical Transmission Characteristics of Fiber Ring Resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

Ku, P.

P. Ku, C. Chang-Hasnain, and S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38(24), 1581–1583 (2002).
[CrossRef]

Ku, P. C.

Lee, R. K.

Lepeshkin, N. N.

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q.-H. Park, H. Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264(1), 163–168 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Li, T.

Lipson, M.

Martinelli, M.

Melloni, A.

Morichetti, F.

Okawachi, Y.

Palinginis, P.

Park, Q.-H.

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q.-H. Park, H. Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264(1), 163–168 (2006).
[CrossRef]

Riyopoulos, S.

S. Riyopoulos, “Slow light waves at sonic propagation speed in active photonic lattices,” Phys. Rev. A 75(1), 013801 (2007).
[CrossRef]

Rosenberger, A. T.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Scherer, A.

Schweinsberg, A.

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q.-H. Park, H. Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264(1), 163–168 (2006).
[CrossRef]

Schweinsberg, R. W.

J. E. Heebner, A. Vincent Wong, R. W. Schweinsberg, Boyd, and D. J. Jackson, “Optical Transmission Characteristics of Fiber Ring Resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Sedgwick, F.

Shakya, J.

Sharping, J.

Shi, Z.

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007).
[CrossRef]

Shvets, G.

Smith, D. D.

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q.-H. Park, H. Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264(1), 163–168 (2006).
[CrossRef]

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

D. D. Smith, H. Chang, and K. A. Fuller, “Whispering-gallery mode splitting in coupled microresonators,” J. Opt. Soc. Am. B 20(9), 1967–1974 (2003).
[CrossRef]

Solli, D.

D. Solli, R. Y. Chiao, and J. M. Hickmann, “Superluminal effects and negative group delays in electronics, and their applications,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 056601 (2002).
[CrossRef]

Song, K.-Y.

M. González-Herráez, K.-Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[CrossRef]

Thévenaz, L.

M. González-Herráez, K.-Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[CrossRef]

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

K. Totsuka and M. Tomita, “Observation of fast light in Mie scattering processes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4), 045602 (2006).
[CrossRef] [PubMed]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

K. Totsuka and M. Tomita, “Observation of fast light in Mie scattering processes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4), 045602 (2006).
[CrossRef] [PubMed]

Vincent Wong, A.

J. E. Heebner, A. Vincent Wong, R. W. Schweinsberg, Boyd, and D. J. Jackson, “Optical Transmission Characteristics of Fiber Ring Resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

Vudyasetu, P. K.

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007).
[CrossRef]

Wang, H.

Xu, Q. F.

Xu, Y.

Yariv, A.

Zhang, X.

Appl. Phys. Lett. (1)

M. González-Herráez, K.-Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87(8), 081113 (2005).
[CrossRef]

Electron. Lett. (1)

P. Ku, C. Chang-Hasnain, and S. Chuang, “Variable semiconductor all-optical buffer,” Electron. Lett. 38(24), 1581–1583 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. E. Heebner, A. Vincent Wong, R. W. Schweinsberg, Boyd, and D. J. Jackson, “Optical Transmission Characteristics of Fiber Ring Resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Opt. Commun. (1)

D. D. Smith, N. N. Lepeshkin, A. Schweinsberg, G. Gehring, R. W. Boyd, Q.-H. Park, H. Chang, and D. J. Jackson, “Coupled-resonator-induced transparency in a fiber system,” Opt. Commun. 264(1), 163–168 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. A (2)

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

S. Riyopoulos, “Slow light waves at sonic propagation speed in active photonic lattices,” Phys. Rev. A 75(1), 013801 (2007).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

K. Totsuka and M. Tomita, “Observation of fast light in Mie scattering processes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(4), 045602 (2006).
[CrossRef] [PubMed]

D. Solli, R. Y. Chiao, and J. M. Hickmann, “Superluminal effects and negative group delays in electronics, and their applications,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5), 056601 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Slow-light fourier transform interferometer,” Phys. Rev. Lett. 99(24), 240801 (2007).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the nested fiber ring resonator.

Fig. 2
Fig. 2

The absorption and effective phase shift of out1 (solid curve) and out2 (dotted curve) while the attenuation factor α is 0.85, the coupling coefficients κ 1 , κ 2 are 0.8 and 0.7, κ 3 , κ 4 are 0.6. Left Y-axis corresponds to the solid curve, and the right corresponds to the dotted curve in the effective phase shift figure.

Fig. 3
Fig. 3

The experimental setup used to measure the transmission spectra of the NFRR.

Fig. 4
Fig. 4

The measured transmission spectra of the NFRR. The coupling coefficients κ 1 and κ 2 are 0.95, 0.9, 0.85 and 0.8 from Fig. 3(a) to Fig. 3(d). The solid line represents the normalized transmission of out1, while the dotted line represents the normalized transmission of out2.

Fig. 5
Fig. 5

The experimental setup used to observe the group delay in the NFRR.

Fig. 6
Fig. 6

Simulated and observed group delay of out1 and out2 as a function of coupling coefficients κ 1 and κ 2 . The simulated results are shown as solid and dashed lines, and the experimental results are shown as the solid squares and diamonds in the figure. The solid line and left Y- axis represent the group delay of out1, while the dashed line and right Y- axis represent the group delay of out2. The inset shows the normalized input (solid curve) and output of out1 (dashed line) and out2 (dotted line) signal when κ 1 and κ 2 is 0.99.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E o u t 1 E i n 1 = r 1 + ( r 1 2 κ 1 2 ) X r 1 r 2 M + r 2 ( M X N Y ) 1 + r 1 X r 2 M + r 1 r 2 ( M X N Y ) τ a
E o u t 2 E i n 1 = i κ 1 κ 2 N 1 + r 1 X r 2 M + r 1 r 2 ( M X N Y ) τ b
Φ j ( e f f ) = arg ( E o u t E i n ) = arg ( τ j )
T D j = d Φ j ( e f f ) d ω

Metrics