Abstract

We investigate the formation of diversiform micro-/nano-structures in High-Pressure High-Temperature (HPHT) synthetic single-crystal diamond by tight-focusing 200 fs regeneratively amplified Ti: Sapphire laser pulses centered at λ = 800 nm. Ablated samples of synthetic single crystal nanodiamond and their acetate replicas are analyzed using scanning electron microscopy (SEM). Using pulse energies that are significantly above the threshold for permanent change, it is shown from this work that amplified femtosecond pulses are capable of producing controlled modification of HPHT single-crystal diamond at size scales below the diffraction limit and provided negligible collateral heating and shock-wave damage. This is attributed to the low thermal losses and negligible hydrodynamic expansion of the ablated material during the femtosecond laser pulse. It is shown that low pulse energy is a key factor for the accurate and precise machining of micropattems.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
    [CrossRef] [PubMed]
  2. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [CrossRef] [PubMed]
  3. E. Mazur, “Applications of femtosecond lasers in materials processing,” in Conference on Lasers and Electro-Optics Europe (Munich, Germany, 2009).
  4. J. Perriere, E. Millon, and E. Fogarassy, eds., Recent Advances in Laser Processing of Materials (Elsevier, 2006).
  5. H. Misawa, and S. Juodkazis, eds., 3D Laser Microfabrication: Principles and Applications (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006).
  6. C. Phipps, ed., Laser Ablation and its Applications (Springer, New York, 2007).
  7. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
    [CrossRef] [PubMed]
  8. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
    [CrossRef]
  9. A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
    [CrossRef] [PubMed]
  10. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002).
    [PubMed]
  11. M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
    [CrossRef]
  12. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15(9), 5674–5686 (2007).
    [CrossRef] [PubMed]
  13. B. Qian, J. Song, G. P. Dong, L. B. Su, B. Zhu, X. F. Liu, S. Z. Sun, Q. Zhang, and J. R. Qiu, “Formation and partial recovery of optically induced local dislocations inside CaF2 single crystal,” Opt. Express 17(10), 8552–8557 (2009).
    [CrossRef] [PubMed]
  14. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15(25), 16800–16807 (2007).
    [CrossRef] [PubMed]
  15. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
    [CrossRef] [PubMed]
  16. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Sel. Top. Quantum Electron. 10(3), 375–386 (1974).
    [CrossRef]
  17. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
    [CrossRef]
  18. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  19. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [CrossRef]
  20. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
    [CrossRef]
  21. C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15(16), 10303–10317 (2007).
    [CrossRef] [PubMed]
  22. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
    [CrossRef] [PubMed]
  23. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
    [CrossRef]
  24. F. Ahmed and M. S. Lee, “Micromachining of Grooves for Cutting Fused Silica Plates with Femtosecond Laser Pulses,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007, (Optical Society of America, 2007), paper TuB2_3.
  25. T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).
  26. M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
    [CrossRef]
  27. D. Ramanathan and P. A. Molian, “Micro- and sub-micromachining of type IIa single crystal diamond using a Ti: Sapphire femtosecond laser,” J. Manuf. Sci. Eng. 124(2), 389–396 (2002).
    [CrossRef]
  28. M. Takesada, E. Vanagas, D. Tuzhilin, I. Kudryashov, S. Suruga, H. Murakami, N. Sarukura, K. Matsuda, S. Mononobe, T. Saiki, M. Yoshimoto, and S. Y. Koshihara, “Micro-character printing on a diamond plate by femtosecond infrared optical pulses,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4613–4616 (2003).
    [CrossRef]
  29. P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
    [CrossRef]
  30. J. L. Davidson, W. P. Kang, Y. Gurbuz, K. C. Holmes, L. G. Davis, A. Wisitsora-at, D. V. Kerns, R. L. Eidson, and T. Henderson, “Diamond as an active sensor material,” Diamond Related Materials 8(8-9), 1741–1747 (1999).
    [CrossRef]
  31. W. P. Kang, T. S. Fisher, and J. L. Davidson, “Diamond microemitters - The new frontier of electron field emissions and beyond,” New Diamond Front. Carbon Technol. 11, 129–146 (2001).
  32. http://www.diamondedgeco.com/11533.html, “High Quality Diamond Knives,” (Diamond Edge Company, 2010), Accessed 05/24/2010.
  33. D. Gómez, I. Goenaga, I. Lizuain, and M. Ozaita, “Femtosecond laser ablation for microfluidics,” Opt. Eng. 44(5), 051105 (2005).
    [CrossRef]
  34. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008).
    [CrossRef] [PubMed]
  35. K. Subramanian, W. P. Kang, J. L. Davidson, and M. Howell, “Nanodiamond lateral field emitter devices on thick insulator substrates for reliable high power applications,” Diamond Related Materials 17(4-5), 786–789 (2008).
    [CrossRef]
  36. Y. F. Tzeng, K. H. Liu, Y. C. Lee, S. J. Lin, I. N. Lin, C. Y. Lee, and H. T. Chiu, “Fabrication of an ultra-nanocrystalline diamond-coated silicon wire array with enhanced field-emission performance,” Nanotechnology 18(43), 435703 (2007).
    [CrossRef]
  37. Y. L. Liou, J. C. Liou, J. H. Huang, N. H. Tai, and I. N. Lin, “Fabrication and field emission properties of ultra-nanocrystalline diamond lateral emitters,” Diamond Related Materials 17(4-5), 776–781 (2008).
    [CrossRef]
  38. T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005).
    [CrossRef]
  39. T. S. Fisher, “Influence of nanoscale geometry on the thermodynamics of electron field emission,” Appl. Phys. Lett. 79(22), 3699–3701 (2001).
    [CrossRef]
  40. T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).
  41. M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
    [CrossRef]
  42. G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002).
    [CrossRef]
  43. K. Subramanian, W. P. Kang, J. L. Davidson, W. H. Hofmeister, B. K. Choi, and M. Howell, “Nanodiamond planar lateral field emission diode,” Diamond Related Materials 14(11-12), 2099–2104 (2005).
    [CrossRef]
  44. M. Groenendijk and J. Meijer, “Microstructuring using femtosecond pulsed laser ablation,” J. Laser Appl. 18(3), 227–235 (2006).
    [CrossRef]
  45. D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser Mirror Damage in Germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
    [CrossRef]
  46. Z. Guosheng, P. Fauchet, and A. Siegman, “Growth of Spontaneous Periodic Surface-Structures on Solids During Laser Illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
    [CrossRef]
  47. A. J. Pedraza, Y. F. Guan, J. D. Fowlkes, and D. A. Smith, “Nanostructures produced by ultraviolet laser irradiation of silicon. I. Rippled structures,” J. Vac. Sci. Technol. B 22(6), 2823–2835 (2004).
    [CrossRef]
  48. R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13(17), 6651–6656 (2005).
    [CrossRef] [PubMed]

2009 (2)

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[CrossRef]

B. Qian, J. Song, G. P. Dong, L. B. Su, B. Zhu, X. F. Liu, S. Z. Sun, Q. Zhang, and J. R. Qiu, “Formation and partial recovery of optically induced local dislocations inside CaF2 single crystal,” Opt. Express 17(10), 8552–8557 (2009).
[CrossRef] [PubMed]

2008 (6)

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008).
[CrossRef] [PubMed]

Y. L. Liou, J. C. Liou, J. H. Huang, N. H. Tai, and I. N. Lin, “Fabrication and field emission properties of ultra-nanocrystalline diamond lateral emitters,” Diamond Related Materials 17(4-5), 776–781 (2008).
[CrossRef]

K. Subramanian, W. P. Kang, J. L. Davidson, and M. Howell, “Nanodiamond lateral field emitter devices on thick insulator substrates for reliable high power applications,” Diamond Related Materials 17(4-5), 786–789 (2008).
[CrossRef]

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

2007 (4)

2006 (3)

M. Groenendijk and J. Meijer, “Microstructuring using femtosecond pulsed laser ablation,” J. Laser Appl. 18(3), 227–235 (2006).
[CrossRef]

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[CrossRef]

2005 (5)

K. Subramanian, W. P. Kang, J. L. Davidson, W. H. Hofmeister, B. K. Choi, and M. Howell, “Nanodiamond planar lateral field emission diode,” Diamond Related Materials 14(11-12), 2099–2104 (2005).
[CrossRef]

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
[CrossRef]

D. Gómez, I. Goenaga, I. Lizuain, and M. Ozaita, “Femtosecond laser ablation for microfluidics,” Opt. Eng. 44(5), 051105 (2005).
[CrossRef]

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13(17), 6651–6656 (2005).
[CrossRef] [PubMed]

2004 (3)

A. J. Pedraza, Y. F. Guan, J. D. Fowlkes, and D. A. Smith, “Nanostructures produced by ultraviolet laser irradiation of silicon. I. Rippled structures,” J. Vac. Sci. Technol. B 22(6), 2823–2835 (2004).
[CrossRef]

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

2003 (2)

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[CrossRef]

M. Takesada, E. Vanagas, D. Tuzhilin, I. Kudryashov, S. Suruga, H. Murakami, N. Sarukura, K. Matsuda, S. Mononobe, T. Saiki, M. Yoshimoto, and S. Y. Koshihara, “Micro-character printing on a diamond plate by femtosecond infrared optical pulses,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4613–4616 (2003).
[CrossRef]

2002 (4)

D. Ramanathan and P. A. Molian, “Micro- and sub-micromachining of type IIa single crystal diamond using a Ti: Sapphire femtosecond laser,” J. Manuf. Sci. Eng. 124(2), 389–396 (2002).
[CrossRef]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef]

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002).
[CrossRef]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002).
[PubMed]

2001 (2)

T. S. Fisher, “Influence of nanoscale geometry on the thermodynamics of electron field emission,” Appl. Phys. Lett. 79(22), 3699–3701 (2001).
[CrossRef]

W. P. Kang, T. S. Fisher, and J. L. Davidson, “Diamond microemitters - The new frontier of electron field emissions and beyond,” New Diamond Front. Carbon Technol. 11, 129–146 (2001).

1999 (2)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

J. L. Davidson, W. P. Kang, Y. Gurbuz, K. C. Holmes, L. G. Davis, A. Wisitsora-at, D. V. Kerns, R. L. Eidson, and T. Henderson, “Diamond as an active sensor material,” Diamond Related Materials 8(8-9), 1741–1747 (1999).
[CrossRef]

1997 (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[CrossRef]

1996 (3)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
[CrossRef] [PubMed]

1995 (2)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

1982 (1)

Z. Guosheng, P. Fauchet, and A. Siegman, “Growth of Spontaneous Periodic Surface-Structures on Solids During Laser Illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[CrossRef]

1974 (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Sel. Top. Quantum Electron. 10(3), 375–386 (1974).
[CrossRef]

1973 (1)

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser Mirror Damage in Germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[CrossRef]

Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Anhut, T.

Arnold, C. L.

Ashkenasi, D.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Audouard, E.

Bloembergen, N.

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Sel. Top. Quantum Electron. 10(3), 375–386 (1974).
[CrossRef]

Callan, J. P.

Campbell, K.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

Carr, C. W.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Chiu, H. T.

Y. F. Tzeng, K. H. Liu, Y. C. Lee, S. J. Lin, I. N. Lin, C. Y. Lee, and H. T. Chiu, “Fabrication of an ultra-nanocrystalline diamond-coated silicon wire array with enhanced field-emission performance,” Nanotechnology 18(43), 435703 (2007).
[CrossRef]

Choi, B. K.

K. Subramanian, W. P. Kang, J. L. Davidson, W. H. Hofmeister, B. K. Choi, and M. Howell, “Nanodiamond planar lateral field emission diode,” Diamond Related Materials 14(11-12), 2099–2104 (2005).
[CrossRef]

Davidson, J. L.

K. Subramanian, W. P. Kang, J. L. Davidson, and M. Howell, “Nanodiamond lateral field emitter devices on thick insulator substrates for reliable high power applications,” Diamond Related Materials 17(4-5), 786–789 (2008).
[CrossRef]

K. Subramanian, W. P. Kang, J. L. Davidson, W. H. Hofmeister, B. K. Choi, and M. Howell, “Nanodiamond planar lateral field emission diode,” Diamond Related Materials 14(11-12), 2099–2104 (2005).
[CrossRef]

W. P. Kang, T. S. Fisher, and J. L. Davidson, “Diamond microemitters - The new frontier of electron field emissions and beyond,” New Diamond Front. Carbon Technol. 11, 129–146 (2001).

J. L. Davidson, W. P. Kang, Y. Gurbuz, K. C. Holmes, L. G. Davis, A. Wisitsora-at, D. V. Kerns, R. L. Eidson, and T. Henderson, “Diamond as an active sensor material,” Diamond Related Materials 8(8-9), 1741–1747 (1999).
[CrossRef]

Davis, L. G.

J. L. Davidson, W. P. Kang, Y. Gurbuz, K. C. Holmes, L. G. Davis, A. Wisitsora-at, D. V. Kerns, R. L. Eidson, and T. Henderson, “Diamond as an active sensor material,” Diamond Related Materials 8(8-9), 1741–1747 (1999).
[CrossRef]

Demos, S. G.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

Dong, G. P.

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[CrossRef]

Dumitru, G.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002).
[CrossRef]

Eidson, R. L.

J. L. Davidson, W. P. Kang, Y. Gurbuz, K. C. Holmes, L. G. Davis, A. Wisitsora-at, D. V. Kerns, R. L. Eidson, and T. Henderson, “Diamond as an active sensor material,” Diamond Related Materials 8(8-9), 1741–1747 (1999).
[CrossRef]

Emmony, D. C.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser Mirror Damage in Germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[CrossRef]

Ertmer, W.

Fauchet, P.

Z. Guosheng, P. Fauchet, and A. Siegman, “Growth of Spontaneous Periodic Surface-Structures on Solids During Laser Illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[CrossRef]

Feit, M. D.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

Finlay, R. J.

Fisher, T. S.

W. P. Kang, T. S. Fisher, and J. L. Davidson, “Diamond microemitters - The new frontier of electron field emissions and beyond,” New Diamond Front. Carbon Technol. 11, 129–146 (2001).

T. S. Fisher, “Influence of nanoscale geometry on the thermodynamics of electron field emission,” Appl. Phys. Lett. 79(22), 3699–3701 (2001).
[CrossRef]

Fowlkes, J. D.

A. J. Pedraza, Y. F. Guan, J. D. Fowlkes, and D. A. Smith, “Nanostructures produced by ultraviolet laser irradiation of silicon. I. Rippled structures,” J. Vac. Sci. Technol. B 22(6), 2823–2835 (2004).
[CrossRef]

Furuki, M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

Gattass, R. R.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Gibson, B. C.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[CrossRef]

Glezer, E. N.

Godfried, H. P.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

Goenaga, I.

D. Gómez, I. Goenaga, I. Lizuain, and M. Ozaita, “Femtosecond laser ablation for microfluidics,” Opt. Eng. 44(5), 051105 (2005).
[CrossRef]

Gómez, D.

D. Gómez, I. Goenaga, I. Lizuain, and M. Ozaita, “Femtosecond laser ablation for microfluidics,” Opt. Eng. 44(5), 051105 (2005).
[CrossRef]

Greentree, A. D.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[CrossRef]

Groenendijk, M.

M. Groenendijk and J. Meijer, “Microstructuring using femtosecond pulsed laser ablation,” J. Laser Appl. 18(3), 227–235 (2006).
[CrossRef]

Groisman, A.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

Guan, Y. F.

A. J. Pedraza, Y. F. Guan, J. D. Fowlkes, and D. A. Smith, “Nanostructures produced by ultraviolet laser irradiation of silicon. I. Rippled structures,” J. Vac. Sci. Technol. B 22(6), 2823–2835 (2004).
[CrossRef]

Guosheng, Z.

Z. Guosheng, P. Fauchet, and A. Siegman, “Growth of Spontaneous Periodic Surface-Structures on Solids During Laser Illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[CrossRef]

Gurbuz, Y.

J. L. Davidson, W. P. Kang, Y. Gurbuz, K. C. Holmes, L. G. Davis, A. Wisitsora-at, D. V. Kerns, R. L. Eidson, and T. Henderson, “Diamond as an active sensor material,” Diamond Related Materials 8(8-9), 1741–1747 (1999).
[CrossRef]

Heisterkamp, A.

Henderson, T.

J. L. Davidson, W. P. Kang, Y. Gurbuz, K. C. Holmes, L. G. Davis, A. Wisitsora-at, D. V. Kerns, R. L. Eidson, and T. Henderson, “Diamond as an active sensor material,” Diamond Related Materials 8(8-9), 1741–1747 (1999).
[CrossRef]

Her, T. H.

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Hirao, K.

Hofmeister, W. H.

K. Subramanian, W. P. Kang, J. L. Davidson, W. H. Hofmeister, B. K. Choi, and M. Howell, “Nanodiamond planar lateral field emission diode,” Diamond Related Materials 14(11-12), 2099–2104 (2005).
[CrossRef]

Holmes, K. C.

J. L. Davidson, W. P. Kang, Y. Gurbuz, K. C. Holmes, L. G. Davis, A. Wisitsora-at, D. V. Kerns, R. L. Eidson, and T. Henderson, “Diamond as an active sensor material,” Diamond Related Materials 8(8-9), 1741–1747 (1999).
[CrossRef]

Houwman, E. P.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

Howell, M.

K. Subramanian, W. P. Kang, J. L. Davidson, and M. Howell, “Nanodiamond lateral field emitter devices on thick insulator substrates for reliable high power applications,” Diamond Related Materials 17(4-5), 786–789 (2008).
[CrossRef]

K. Subramanian, W. P. Kang, J. L. Davidson, W. H. Hofmeister, B. K. Choi, and M. Howell, “Nanodiamond planar lateral field emission diode,” Diamond Related Materials 14(11-12), 2099–2104 (2005).
[CrossRef]

Howson, R. P.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser Mirror Damage in Germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[CrossRef]

Huang, J. H.

Y. L. Liou, J. C. Liou, J. H. Huang, N. H. Tai, and I. N. Lin, “Fabrication and field emission properties of ultra-nanocrystalline diamond lateral emitters,” Diamond Related Materials 17(4-5), 776–781 (2008).
[CrossRef]

Huang, L.

Hunt, A. J.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[CrossRef]

Huntington, S. T.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[CrossRef]

Huot, N.

Jamieson, D. N.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[CrossRef]

Joglekar, A. P.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[CrossRef]

Kang, W. P.

K. Subramanian, W. P. Kang, J. L. Davidson, and M. Howell, “Nanodiamond lateral field emitter devices on thick insulator substrates for reliable high power applications,” Diamond Related Materials 17(4-5), 786–789 (2008).
[CrossRef]

K. Subramanian, W. P. Kang, J. L. Davidson, W. H. Hofmeister, B. K. Choi, and M. Howell, “Nanodiamond planar lateral field emission diode,” Diamond Related Materials 14(11-12), 2099–2104 (2005).
[CrossRef]

W. P. Kang, T. S. Fisher, and J. L. Davidson, “Diamond microemitters - The new frontier of electron field emissions and beyond,” New Diamond Front. Carbon Technol. 11, 129–146 (2001).

J. L. Davidson, W. P. Kang, Y. Gurbuz, K. C. Holmes, L. G. Davis, A. Wisitsora-at, D. V. Kerns, R. L. Eidson, and T. Henderson, “Diamond as an active sensor material,” Diamond Related Materials 8(8-9), 1741–1747 (1999).
[CrossRef]

Kerns, D. V.

J. L. Davidson, W. P. Kang, Y. Gurbuz, K. C. Holmes, L. G. Davis, A. Wisitsora-at, D. V. Kerns, R. L. Eidson, and T. Henderson, “Diamond as an active sensor material,” Diamond Related Materials 8(8-9), 1741–1747 (1999).
[CrossRef]

Kim, A. M. T.

Kim, T. N.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

Kleinfeld, D.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

Komlenok, M. S.

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

Kondo, T.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

König, K.

Kononenko, T. V.

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

Konov, V. I.

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

Koshihara, S. Y.

M. Takesada, E. Vanagas, D. Tuzhilin, I. Kudryashov, S. Suruga, H. Murakami, N. Sarukura, K. Matsuda, S. Mononobe, T. Saiki, M. Yoshimoto, and S. Y. Koshihara, “Micro-character printing on a diamond plate by femtosecond infrared optical pulses,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4613–4616 (2003).
[CrossRef]

Kriele, P. A. C.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

Kudryashov, I.

M. Takesada, E. Vanagas, D. Tuzhilin, I. Kudryashov, S. Suruga, H. Murakami, N. Sarukura, K. Matsuda, S. Mononobe, T. Saiki, M. Yoshimoto, and S. Y. Koshihara, “Micro-character printing on a diamond plate by femtosecond infrared optical pulses,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4613–4616 (2003).
[CrossRef]

Le Harzic, R.

Lee, C. Y.

Y. F. Tzeng, K. H. Liu, Y. C. Lee, S. J. Lin, I. N. Lin, C. Y. Lee, and H. T. Chiu, “Fabrication of an ultra-nanocrystalline diamond-coated silicon wire array with enhanced field-emission performance,” Nanotechnology 18(43), 435703 (2007).
[CrossRef]

Lee, Y. C.

Y. F. Tzeng, K. H. Liu, Y. C. Lee, S. J. Lin, I. N. Lin, C. Y. Lee, and H. T. Chiu, “Fabrication of an ultra-nanocrystalline diamond-coated silicon wire array with enhanced field-emission performance,” Nanotechnology 18(43), 435703 (2007).
[CrossRef]

Lin, I. N.

Y. L. Liou, J. C. Liou, J. H. Huang, N. H. Tai, and I. N. Lin, “Fabrication and field emission properties of ultra-nanocrystalline diamond lateral emitters,” Diamond Related Materials 17(4-5), 776–781 (2008).
[CrossRef]

Y. F. Tzeng, K. H. Liu, Y. C. Lee, S. J. Lin, I. N. Lin, C. Y. Lee, and H. T. Chiu, “Fabrication of an ultra-nanocrystalline diamond-coated silicon wire array with enhanced field-emission performance,” Nanotechnology 18(43), 435703 (2007).
[CrossRef]

Lin, S. J.

Y. F. Tzeng, K. H. Liu, Y. C. Lee, S. J. Lin, I. N. Lin, C. Y. Lee, and H. T. Chiu, “Fabrication of an ultra-nanocrystalline diamond-coated silicon wire array with enhanced field-emission performance,” Nanotechnology 18(43), 435703 (2007).
[CrossRef]

Liou, J. C.

Y. L. Liou, J. C. Liou, J. H. Huang, N. H. Tai, and I. N. Lin, “Fabrication and field emission properties of ultra-nanocrystalline diamond lateral emitters,” Diamond Related Materials 17(4-5), 776–781 (2008).
[CrossRef]

Liou, Y. L.

Y. L. Liou, J. C. Liou, J. H. Huang, N. H. Tai, and I. N. Lin, “Fabrication and field emission properties of ultra-nanocrystalline diamond lateral emitters,” Diamond Related Materials 17(4-5), 776–781 (2008).
[CrossRef]

Liu, H.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[CrossRef]

Liu, H. H.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Liu, K. H.

Y. F. Tzeng, K. H. Liu, Y. C. Lee, S. J. Lin, I. N. Lin, C. Y. Lee, and H. T. Chiu, “Fabrication of an ultra-nanocrystalline diamond-coated silicon wire array with enhanced field-emission performance,” Nanotechnology 18(43), 435703 (2007).
[CrossRef]

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[CrossRef]

Liu, X. F.

Lizuain, I.

D. Gómez, I. Goenaga, I. Lizuain, and M. Ozaita, “Femtosecond laser ablation for microfluidics,” Opt. Eng. 44(5), 051105 (2005).
[CrossRef]

Lorenz, M.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Lubatschowski, H.

Marine, W.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002).
[CrossRef]

Matsuda, K.

M. Takesada, E. Vanagas, D. Tuzhilin, I. Kudryashov, S. Suruga, H. Murakami, N. Sarukura, K. Matsuda, S. Mononobe, T. Saiki, M. Yoshimoto, and S. Y. Koshihara, “Micro-character printing on a diamond plate by femtosecond infrared optical pulses,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4613–4616 (2003).
[CrossRef]

Mauclair, C.

Mazur, E.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002).
[PubMed]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
[CrossRef] [PubMed]

Meier, M.

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

Meijer, J.

M. Groenendijk and J. Meijer, “Microstructuring using femtosecond pulsed laser ablation,” J. Laser Appl. 18(3), 227–235 (2006).
[CrossRef]

Mermillod-Blondin, A.

Meyhofer, E.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[CrossRef]

Meyhöfer, E.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Milosavljevic, M.

Miura, K.

Molian, P. A.

D. Ramanathan and P. A. Molian, “Micro- and sub-micromachining of type IIa single crystal diamond using a Ti: Sapphire femtosecond laser,” J. Manuf. Sci. Eng. 124(2), 389–396 (2002).
[CrossRef]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Mononobe, S.

M. Takesada, E. Vanagas, D. Tuzhilin, I. Kudryashov, S. Suruga, H. Murakami, N. Sarukura, K. Matsuda, S. Mononobe, T. Saiki, M. Yoshimoto, and S. Y. Koshihara, “Micro-character printing on a diamond plate by femtosecond infrared optical pulses,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4613–4616 (2003).
[CrossRef]

Moore, D.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[CrossRef]

Mourou, G.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[CrossRef]

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[CrossRef]

Murakami, H.

M. Takesada, E. Vanagas, D. Tuzhilin, I. Kudryashov, S. Suruga, H. Murakami, N. Sarukura, K. Matsuda, S. Mononobe, T. Saiki, M. Yoshimoto, and S. Y. Koshihara, “Micro-character printing on a diamond plate by femtosecond infrared optical pulses,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4613–4616 (2003).
[CrossRef]

Nakaoki, A.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

Nelissen, W. H. M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

Nishimura, N.

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Olivero, P.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[CrossRef]

Ozaita, M.

D. Gómez, I. Goenaga, I. Lizuain, and M. Ozaita, “Femtosecond laser ablation for microfluidics,” Opt. Eng. 44(5), 051105 (2005).
[CrossRef]

Pashinin, V. P.

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

Pedraza, A. J.

A. J. Pedraza, Y. F. Guan, J. D. Fowlkes, and D. A. Smith, “Nanostructures produced by ultraviolet laser irradiation of silicon. I. Rippled structures,” J. Vac. Sci. Technol. B 22(6), 2823–2835 (2004).
[CrossRef]

Pels, G. J.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

Pimenov, S. M.

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

Prawer, S.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[CrossRef]

Qian, B.

Qiu, J. R.

Rabeau, J. R.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[CrossRef]

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

Ramanathan, D.

D. Ramanathan and P. A. Molian, “Micro- and sub-micromachining of type IIa single crystal diamond using a Ti: Sapphire femtosecond laser,” J. Manuf. Sci. Eng. 124(2), 389–396 (2002).
[CrossRef]

Reichart, P.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[CrossRef]

Riemann, I.

Romano, V.

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002).
[CrossRef]

Rosenfeld, A.

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Rubanov, S.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[CrossRef]

Rubenchik, A. M.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

Saiki, T.

M. Takesada, E. Vanagas, D. Tuzhilin, I. Kudryashov, S. Suruga, H. Murakami, N. Sarukura, K. Matsuda, S. Mononobe, T. Saiki, M. Yoshimoto, and S. Y. Koshihara, “Micro-character printing on a diamond plate by femtosecond infrared optical pulses,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4613–4616 (2003).
[CrossRef]

Saito, K.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

Sakakura, M.

Salzman, J.

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[CrossRef]

Sarukura, N.

M. Takesada, E. Vanagas, D. Tuzhilin, I. Kudryashov, S. Suruga, H. Murakami, N. Sarukura, K. Matsuda, S. Mononobe, T. Saiki, M. Yoshimoto, and S. Y. Koshihara, “Micro-character printing on a diamond plate by femtosecond infrared optical pulses,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4613–4616 (2003).
[CrossRef]

Sauer, D.

Schaffer, C. B.

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002).
[PubMed]

Schaich, T. J.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

Schuck, H.

Sentis, M.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002).
[CrossRef]

Shimotsuma, Y.

Shinoda, M.

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[CrossRef]

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

Siegman, A.

Z. Guosheng, P. Fauchet, and A. Siegman, “Growth of Spontaneous Periodic Surface-Structures on Solids During Laser Illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[CrossRef]

Smith, D. A.

A. J. Pedraza, Y. F. Guan, J. D. Fowlkes, and D. A. Smith, “Nanostructures produced by ultraviolet laser irradiation of silicon. I. Rippled structures,” J. Vac. Sci. Technol. B 22(6), 2823–2835 (2004).
[CrossRef]

Song, J.

Spaaij, P. G. M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

Spooner, G. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[CrossRef]

Stoian, R.

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008).
[CrossRef] [PubMed]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

Su, L. B.

Subramanian, K.

K. Subramanian, W. P. Kang, J. L. Davidson, and M. Howell, “Nanodiamond lateral field emitter devices on thick insulator substrates for reliable high power applications,” Diamond Related Materials 17(4-5), 786–789 (2008).
[CrossRef]

K. Subramanian, W. P. Kang, J. L. Davidson, W. H. Hofmeister, B. K. Choi, and M. Howell, “Nanodiamond planar lateral field emission diode,” Diamond Related Materials 14(11-12), 2099–2104 (2005).
[CrossRef]

Sun, S. Z.

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef]

Suruga, S.

M. Takesada, E. Vanagas, D. Tuzhilin, I. Kudryashov, S. Suruga, H. Murakami, N. Sarukura, K. Matsuda, S. Mononobe, T. Saiki, M. Yoshimoto, and S. Y. Koshihara, “Micro-character printing on a diamond plate by femtosecond infrared optical pulses,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4613–4616 (2003).
[CrossRef]

Tai, N. H.

Y. L. Liou, J. C. Liou, J. H. Huang, N. H. Tai, and I. N. Lin, “Fabrication and field emission properties of ultra-nanocrystalline diamond lateral emitters,” Diamond Related Materials 17(4-5), 776–781 (2008).
[CrossRef]

Takeda, M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

Takesada, M.

M. Takesada, E. Vanagas, D. Tuzhilin, I. Kudryashov, S. Suruga, H. Murakami, N. Sarukura, K. Matsuda, S. Mononobe, T. Saiki, M. Yoshimoto, and S. Y. Koshihara, “Micro-character printing on a diamond plate by femtosecond infrared optical pulses,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4613–4616 (2003).
[CrossRef]

Terazima, M.

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Tuzhilin, D.

M. Takesada, E. Vanagas, D. Tuzhilin, I. Kudryashov, S. Suruga, H. Murakami, N. Sarukura, K. Matsuda, S. Mononobe, T. Saiki, M. Yoshimoto, and S. Y. Koshihara, “Micro-character printing on a diamond plate by femtosecond infrared optical pulses,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4613–4616 (2003).
[CrossRef]

Tzeng, Y. F.

Y. F. Tzeng, K. H. Liu, Y. C. Lee, S. J. Lin, I. N. Lin, C. Y. Lee, and H. T. Chiu, “Fabrication of an ultra-nanocrystalline diamond-coated silicon wire array with enhanced field-emission performance,” Nanotechnology 18(43), 435703 (2007).
[CrossRef]

Van Oerle, B. M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

Vanagas, E.

M. Takesada, E. Vanagas, D. Tuzhilin, I. Kudryashov, S. Suruga, H. Murakami, N. Sarukura, K. Matsuda, S. Mononobe, T. Saiki, M. Yoshimoto, and S. Y. Koshihara, “Micro-character printing on a diamond plate by femtosecond infrared optical pulses,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4613–4616 (2003).
[CrossRef]

Weber, H. P.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002).
[CrossRef]

Willis, L. J.

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser Mirror Damage in Germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[CrossRef]

Wisitsora-at, A.

J. L. Davidson, W. P. Kang, Y. Gurbuz, K. C. Holmes, L. G. Davis, A. Wisitsora-at, D. V. Kerns, R. L. Eidson, and T. Henderson, “Diamond as an active sensor material,” Diamond Related Materials 8(8-9), 1741–1747 (1999).
[CrossRef]

Yamamoto, M.

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

Yoshimoto, M.

M. Takesada, E. Vanagas, D. Tuzhilin, I. Kudryashov, S. Suruga, H. Murakami, N. Sarukura, K. Matsuda, S. Mononobe, T. Saiki, M. Yoshimoto, and S. Y. Koshihara, “Micro-character printing on a diamond plate by femtosecond infrared optical pulses,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4613–4616 (2003).
[CrossRef]

Zhang, Q.

Zhu, B.

Adv. Mater. (2)

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

T. V. Kononenko, M. Meier, M. S. Komlenok, S. M. Pimenov, V. Romano, V. P. Pashinin, and V. I. Konov, ““Microstructuring of diamond bulk by IR femtosecond laser pulses,” Appl. Phys,” Adv. Mater. 90, 645–651 (2008).

Appl. Phys. B (1)

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77(1), 25–30 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

T. N. Kim, K. Campbell, A. Groisman, D. Kleinfeld, and C. B. Schaffer, “Femtosecond laser-drilled capillary integrated into a microfluidic device,” Appl. Phys. Lett. 86, 201106 (2005).
[CrossRef]

T. S. Fisher, “Influence of nanoscale geometry on the thermodynamics of electron field emission,” Appl. Phys. Lett. 79(22), 3699–3701 (2001).
[CrossRef]

D. C. Emmony, R. P. Howson, and L. J. Willis, “Laser Mirror Damage in Germanium at 10.6 µm,” Appl. Phys. Lett. 23(11), 598–600 (1973).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys., A Mater. Sci. Process. 74(6), 729–739 (2002).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Appl. Surf. Sci. (1)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150(1-4), 101–106 (1999).
[CrossRef]

Diamond Related Materials (5)

P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials 15(10), 1614–1621 (2006).
[CrossRef]

J. L. Davidson, W. P. Kang, Y. Gurbuz, K. C. Holmes, L. G. Davis, A. Wisitsora-at, D. V. Kerns, R. L. Eidson, and T. Henderson, “Diamond as an active sensor material,” Diamond Related Materials 8(8-9), 1741–1747 (1999).
[CrossRef]

K. Subramanian, W. P. Kang, J. L. Davidson, W. H. Hofmeister, B. K. Choi, and M. Howell, “Nanodiamond planar lateral field emission diode,” Diamond Related Materials 14(11-12), 2099–2104 (2005).
[CrossRef]

K. Subramanian, W. P. Kang, J. L. Davidson, and M. Howell, “Nanodiamond lateral field emitter devices on thick insulator substrates for reliable high power applications,” Diamond Related Materials 17(4-5), 786–789 (2008).
[CrossRef]

Y. L. Liou, J. C. Liou, J. H. Huang, N. H. Tai, and I. N. Lin, “Fabrication and field emission properties of ultra-nanocrystalline diamond lateral emitters,” Diamond Related Materials 17(4-5), 776–781 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Sel. Top. Quantum Electron. 10(3), 375–386 (1974).
[CrossRef]

J. Appl. Phys. (1)

M. Shinoda, R. R. Gattass, and E. Mazur, “Femtosecond laser-induced formation of nanometer-width grooves on synthetic single-crystal diamond surfaces,” J. Appl. Phys. 105(5), 053102 (2009).
[CrossRef]

J. Laser Appl. (1)

M. Groenendijk and J. Meijer, “Microstructuring using femtosecond pulsed laser ablation,” J. Laser Appl. 18(3), 227–235 (2006).
[CrossRef]

J. Manuf. Sci. Eng. (1)

D. Ramanathan and P. A. Molian, “Micro- and sub-micromachining of type IIa single crystal diamond using a Ti: Sapphire femtosecond laser,” J. Manuf. Sci. Eng. 124(2), 389–396 (2002).
[CrossRef]

J. Vac. Sci. Technol. B (1)

A. J. Pedraza, Y. F. Guan, J. D. Fowlkes, and D. A. Smith, “Nanostructures produced by ultraviolet laser irradiation of silicon. I. Rippled structures,” J. Vac. Sci. Technol. B 22(6), 2823–2835 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (2)

M. Takesada, E. Vanagas, D. Tuzhilin, I. Kudryashov, S. Suruga, H. Murakami, N. Sarukura, K. Matsuda, S. Mononobe, T. Saiki, M. Yoshimoto, and S. Y. Koshihara, “Micro-character printing on a diamond plate by femtosecond infrared optical pulses,” Jpn. J. Appl. Phys. 42(Part 1, No. 7A), 4613–4616 (2003).
[CrossRef]

M. Shinoda, K. Saito, T. Kondo, A. Nakaoki, M. Furuki, M. Takeda, M. Yamamoto, T. J. Schaich, B. M. Van Oerle, H. P. Godfried, P. A. C. Kriele, E. P. Houwman, W. H. M. Nelissen, G. J. Pels, and P. G. M. Spaaij, “High-density near-field readout using diamond solid immersion lens,” Jpn. J. Appl. Phys. 45(No. 2B), 1311–1313 (2006).
[CrossRef]

Nanotechnology (1)

Y. F. Tzeng, K. H. Liu, Y. C. Lee, S. J. Lin, I. N. Lin, C. Y. Lee, and H. T. Chiu, “Fabrication of an ultra-nanocrystalline diamond-coated silicon wire array with enhanced field-emission performance,” Nanotechnology 18(43), 435703 (2007).
[CrossRef]

Nat. Mater. (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

New Diamond Front. Carbon Technol. (1)

W. P. Kang, T. S. Fisher, and J. L. Davidson, “Diamond microemitters - The new frontier of electron field emissions and beyond,” New Diamond Front. Carbon Technol. 11, 129–146 (2001).

Opt. Eng. (1)

D. Gómez, I. Goenaga, I. Lizuain, and M. Ozaita, “Femtosecond laser ablation for microfluidics,” Opt. Eng. 44(5), 051105 (2005).
[CrossRef]

Opt. Express (7)

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008).
[CrossRef] [PubMed]

C. L. Arnold, A. Heisterkamp, W. Ertmer, and H. Lubatschowski, “Computational model for nonlinear plasma formation in high NA micromachining of transparent materials and biological cells,” Opt. Express 15(16), 10303–10317 (2007).
[CrossRef] [PubMed]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10(3), 196–203 (2002).
[PubMed]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass,” Opt. Express 15(9), 5674–5686 (2007).
[CrossRef] [PubMed]

B. Qian, J. Song, G. P. Dong, L. B. Su, B. Zhu, X. F. Liu, S. Z. Sun, Q. Zhang, and J. R. Qiu, “Formation and partial recovery of optically induced local dislocations inside CaF2 single crystal,” Opt. Express 17(10), 8552–8557 (2009).
[CrossRef] [PubMed]

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15(25), 16800–16807 (2007).
[CrossRef] [PubMed]

R. Le Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100 nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13(17), 6651–6656 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (2)

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
[CrossRef]

Z. Guosheng, P. Fauchet, and A. Siegman, “Growth of Spontaneous Periodic Surface-Structures on Solids During Laser Illumination,” Phys. Rev. B 26(10), 5366–5381 (1982).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Other (6)

E. Mazur, “Applications of femtosecond lasers in materials processing,” in Conference on Lasers and Electro-Optics Europe (Munich, Germany, 2009).

J. Perriere, E. Millon, and E. Fogarassy, eds., Recent Advances in Laser Processing of Materials (Elsevier, 2006).

H. Misawa, and S. Juodkazis, eds., 3D Laser Microfabrication: Principles and Applications (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006).

C. Phipps, ed., Laser Ablation and its Applications (Springer, New York, 2007).

F. Ahmed and M. S. Lee, “Micromachining of Grooves for Cutting Fused Silica Plates with Femtosecond Laser Pulses,” in Conference on Lasers and Electro-Optics/Pacific Rim 2007, (Optical Society of America, 2007), paper TuB2_3.

http://www.diamondedgeco.com/11533.html, “High Quality Diamond Knives,” (Diamond Edge Company, 2010), Accessed 05/24/2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a), The amplified femtosecond pulse generation block producing the 4μJ, 800nm, 200 fs pulses. The amplified femtosecond pulses are generated with a system consisting of Tsunami oscillator (Spectra Physics-model 394) seeding a RegA 9000 (Coherent, Inc.) regenerative amplifier, both of which are pumped with CW 532 nm solid-state Verdi-18 laser (Coherent, Inc.). The Raman excitation pump is derived from the Verdi-18 solid state laser nm and is delivered to the microscope using a periscope assembly. Also shown is the “oscillator only’ output. The photodiode is connected to an oscilloscope to display the repetition rate and the status of the amplified femtosecond pulse train, M: 45 o mirror, BS beam splitter, FM; 45° flip mirror, and (b), the optical system model that represents the fabrication workstation and the integrated Raman microscope. The periscope assembly redirects and changes the elevation of a beam, and consists of a pair of 45° mirrors (0) and (1) with lockable adjustment knobs to provide 360° of rotation of the incoming light. The upper housing also provides fine control, which can be used to compensate for angular deviations of the input beam, (2) is a x-y microstage, (3), xyz nanostage, (4) infinity corrected microscope objective, (5) 800 nm dichroic filter mirror, (6) half-mirror, (7 and 8), tube lens, (9) eye piece, (10) long wave pass Raman edge filter, (11) focusing lens, (12) fiber optic endplate, (13) multimode fiber, (14) 12 bit digital camera, (15) 9 mm computer TV lens, (16) 45° mirror, (17) white light illumination produced from a reflected light vertical illuminator, (18) 532 nm dichroic filter mirror, (19) 532 nm narrow bandpass filter.

Fig. 2
Fig. 2

Illustrates ablation of saw-tooth structures single crystal diamond surfaces. In (b) gold coated extraction replicas of the saw-tooth patterns from (a) is shown with 45 degree tilt.

Fig. 3
Fig. 3

Illustrates ablation of saw-tooth structures on single crystal diamond surfaces. The pulse energies are (a) 0.42 µJ, (b) 0.84 µJ, (c) 1.68 µJ, and (d) 2.52 µJ. The magnified image of the gap between two unablated sections of the shape in (d) is shown Fig. 4.

Fig. 4
Fig. 4

Magnified image of the gap between two unablated sections of the shape in Fig. 3(d). The gap distance. (s-s) is surface- surface gap distance and (e-e) is edge-edge gap distance.

Fig. 5
Fig. 5

Measurements of the gap distance versus laser pulse energy (µJ) at a repetition rate of 250 kHz.

Fig. 6
Fig. 6

Overlapped and slightly shifted (for clarity) images of the triangular patterns in Fig. 3(b) (ablated at pulse energy of 0.84µJ) and 3(d) (ablated at pulse energy of 2.52 µJ).

Fig. 7
Fig. 7

Dependence of feature depth on pulse energy for the shapes in Fig. 3.

Fig. 8
Fig. 8

SEM image of the grooves obtained after irradiating the synthetic single-crystal diamond surface with a pulse train of 200-fs laser pulses at a rate of 250 kHz using a pulse energy of 1.2 µJ. The laser polarization is oriented horizontally perpendicular to the translation direction. In (b) gold coated extraction replica of the grooves patterns from (a) is shown with 45 degree tilt.

Fig. 9
Fig. 9

SEM image of a star structure machined on the surface of the synthetic single crystal diamond by a pulse train of 200-fs laser pulses at a rate of 250 kHz using a pulse energy of 1.4 µJ.

Fig. 10
Fig. 10

(a) SEM image of periodic structures formed after laser irradiation with single pulses irradiated at each spot, and (b) the sample was irradiated at a repetition rate of 250 kHz using a shutter open time of 3 ms, corresponding to N = 750 pulses. In both cases, the step size was 0.25 µm and a 100X focusing objective with a NA of 0.9 was used to focus the 200fs pulses, centered at 800 nm with energy of 840 nJ/pulse. The laser polarization was oriented horizontally perpendicular to the translation direction.

Fig. 11
Fig. 11

(a) Micro-Raman spectrum of an irradiated area after debris removal and removal of any possible graphitized traces in the focus of the laser beam, and (b) Micro-Raman spectrum of an unirradiated area of a laser-processed synthetic single-crystal diamond sample. The irradiated region is shown in Fig. 10(b). The micro-Raman measurements were carried out using a 60X microscope objective with a numerical aperture of 0.85 using a 3 mW excitation power.

Tables (1)

Tables Icon

Table 1 Descriptive statistics on measured groove widths near the bottom of the tracks

Metrics