Abstract

We present a design optimization of highly transparent glasses with broadband antireflective subwavelength structures (SWS) based on the theoretical calculation using a rigorous coupled wave analysis method. It is found that optical transmission characteristics of SWS integrated glasses are governed mainly by the zero-order condition considering multiple internal reflections but not external reflection. By utilizing parabola-shaped SWS on both sides of the glasses with a period of 200 nm and a height of 200 nm, an average transmittance of 99.58% is achieved over a whole range of visible wavelength. Transmission band shrinkage effects of the SWS integrated glass are also observed with increasing the incident angle of light.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
    [CrossRef] [PubMed]
  2. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
    [CrossRef]
  3. Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photon. Technol. Lett. 14(8), 1064–1066 (2002).
    [CrossRef]
  4. M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4346–4349 (2002).
    [CrossRef]
  5. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
    [CrossRef]
  6. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [CrossRef]
  7. Y. Li, J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, “Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings,” J. Mater. Chem. 19(13), 1806–1810 (2009).
    [CrossRef]
  8. Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17(23), 20991–20997 (2009).
    [CrossRef] [PubMed]
  9. P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolums,” Adv. Mater. 21(16), 1618–1621 (2009).
    [CrossRef]
  10. S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
    [CrossRef]
  11. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
    [CrossRef] [PubMed]
  12. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
    [CrossRef]
  13. Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 39(Part 2, No. 7B), L735–L737 (2000).
    [CrossRef]
  14. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO(2) films,” Opt. Lett. 26(21), 1642–1644 (2001).
    [CrossRef]
  15. W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
    [CrossRef]
  16. Y. H. Kang, S. S. Oh, Y.-S. Kim, and C.-G. Choi, “Fabrication of antireflection nanostructures by hybrid nano-patterning lithography,” Microelectron. Eng. 87(2), 125–128 (2010).
    [CrossRef]
  17. M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
    [CrossRef] [PubMed]
  18. Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18(20), 2699–2702 (2006).
    [CrossRef]
  19. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983).
    [CrossRef] [PubMed]
  20. E. Hecht, Optic 4th ed.(Addison Wesley, 2002), Chap. 10.
  21. H. Y. Koo, D. K. Yi, S. J. Yoo, and D.-Y. Kim, “A snowman-like array of colloidal dimmers for antireflecting surfaces,” Adv. Mater. 16(3), 274–277 (2004).
    [CrossRef]
  22. M. A. Ray, N. Shewmon, S. Bhawalkar, L. Jia, Y. Yang, and E. S. Daniels, “Submicrometer surface patterning using interfacial colloidal particle self-assembly,” Langmuir 25(13), 7265–7270 (2009).
    [CrossRef] [PubMed]

2010

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. H. Kang, S. S. Oh, Y.-S. Kim, and C.-G. Choi, “Fabrication of antireflection nanostructures by hybrid nano-patterning lithography,” Microelectron. Eng. 87(2), 125–128 (2010).
[CrossRef]

2009

Y. Li, J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, “Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings,” J. Mater. Chem. 19(13), 1806–1810 (2009).
[CrossRef]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17(23), 20991–20997 (2009).
[CrossRef] [PubMed]

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolums,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

M. A. Ray, N. Shewmon, S. Bhawalkar, L. Jia, Y. Yang, and E. S. Daniels, “Submicrometer surface patterning using interfacial colloidal particle self-assembly,” Langmuir 25(13), 7265–7270 (2009).
[CrossRef] [PubMed]

2008

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[CrossRef]

2007

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

2006

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18(20), 2699–2702 (2006).
[CrossRef]

2004

H. Y. Koo, D. K. Yi, S. J. Yoo, and D.-Y. Kim, “A snowman-like array of colloidal dimmers for antireflecting surfaces,” Adv. Mater. 16(3), 274–277 (2004).
[CrossRef]

2003

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

2002

Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photon. Technol. Lett. 14(8), 1064–1066 (2002).
[CrossRef]

M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4346–4349 (2002).
[CrossRef]

2001

M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
[CrossRef] [PubMed]

K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO(2) films,” Opt. Lett. 26(21), 1642–1644 (2001).
[CrossRef]

2000

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 39(Part 2, No. 7B), L735–L737 (2000).
[CrossRef]

1999

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

1997

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

1983

Bhawalkar, S.

M. A. Ray, N. Shewmon, S. Bhawalkar, L. Jia, Y. Yang, and E. S. Daniels, “Submicrometer surface patterning using interfacial colloidal particle self-assembly,” Langmuir 25(13), 7265–7270 (2009).
[CrossRef] [PubMed]

Blasi, B.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Chang, C.-H.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolums,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Chang, Y. H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chang, Y.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolums,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Chattopadhyay, S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chen, K.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chen, L.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chiu, C.-H.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolums,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Choi, C.-G.

Y. H. Kang, S. S. Oh, Y.-S. Kim, and C.-G. Choi, “Fabrication of antireflection nanostructures by hybrid nano-patterning lithography,” Microelectron. Eng. 87(2), 125–128 (2010).
[CrossRef]

Choi, E. S.

Chou, S. Y.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Cohen, R. E.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18(20), 2699–2702 (2006).
[CrossRef]

Daniels, E. S.

M. A. Ray, N. Shewmon, S. Bhawalkar, L. Jia, Y. Yang, and E. S. Daniels, “Submicrometer surface patterning using interfacial colloidal particle self-assembly,” Langmuir 25(13), 7265–7270 (2009).
[CrossRef] [PubMed]

Doll, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Dong, H.

Y. Li, J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, “Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings,” J. Mater. Chem. 19(13), 1806–1810 (2009).
[CrossRef]

Dreibholz, J.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Fan, H. T.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

Gao, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Ge, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Glaubitt, W.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Gombert, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Guo, J.

Y. Li, J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, “Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings,” J. Mater. Chem. 19(13), 1806–1810 (2009).
[CrossRef]

Hane, K.

M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4346–4349 (2002).
[CrossRef]

Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photon. Technol. Lett. 14(8), 1064–1066 (2002).
[CrossRef]

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 39(Part 2, No. 7B), L735–L737 (2000).
[CrossRef]

Heinzel, A.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Hsu, C. H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Hsu, S.-H.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolums,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Hsu, Y.-K.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Huang, Y.-F.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Ibn-Elhaj, M.

M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
[CrossRef] [PubMed]

Ishimori, M.

M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4346–4349 (2002).
[CrossRef]

Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photon. Technol. Lett. 14(8), 1064–1066 (2002).
[CrossRef]

Jang, S. J.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Jen, Y.-J.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Jia, L.

M. A. Ray, N. Shewmon, S. Bhawalkar, L. Jia, Y. Yang, and E. S. Daniels, “Submicrometer surface patterning using interfacial colloidal particle self-assembly,” Langmuir 25(13), 7265–7270 (2009).
[CrossRef] [PubMed]

Jiang, B.

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[CrossRef]

Jiang, P.

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[CrossRef]

Kanamori, Y.

Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photon. Technol. Lett. 14(8), 1064–1066 (2002).
[CrossRef]

M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4346–4349 (2002).
[CrossRef]

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 39(Part 2, No. 7B), L735–L737 (2000).
[CrossRef]

Kang, Y. H.

Y. H. Kang, S. S. Oh, Y.-S. Kim, and C.-G. Choi, “Fabrication of antireflection nanostructures by hybrid nano-patterning lithography,” Microelectron. Eng. 87(2), 125–128 (2010).
[CrossRef]

Kikuta, H.

K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO(2) films,” Opt. Lett. 26(21), 1642–1644 (2001).
[CrossRef]

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 39(Part 2, No. 7B), L735–L737 (2000).
[CrossRef]

Kim, D.-Y.

H. Y. Koo, D. K. Yi, S. J. Yoo, and D.-Y. Kim, “A snowman-like array of colloidal dimmers for antireflecting surfaces,” Adv. Mater. 16(3), 274–277 (2004).
[CrossRef]

Kim, Y.-S.

Y. H. Kang, S. S. Oh, Y.-S. Kim, and C.-G. Choi, “Fabrication of antireflection nanostructures by hybrid nano-patterning lithography,” Microelectron. Eng. 87(2), 125–128 (2010).
[CrossRef]

Kintaka, K.

Koo, H. Y.

H. Y. Koo, D. K. Yi, S. J. Yoo, and D.-Y. Kim, “A snowman-like array of colloidal dimmers for antireflecting surfaces,” Adv. Mater. 16(3), 274–277 (2004).
[CrossRef]

Kuo, H.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolums,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Lalanne, P.

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

Lee, C.-S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Lee, Y. T.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17(23), 20991–20997 (2009).
[CrossRef] [PubMed]

Li, Y.

Y. Li, J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, “Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings,” J. Mater. Chem. 19(13), 1806–1810 (2009).
[CrossRef]

Liu, T.-A.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Lo, H.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Min, W.-L.

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[CrossRef]

Mizutani, A.

Mlynek, J.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Morris, G. M.

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

Nakano, H.

Nishii, J.

Nolte, A.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18(20), 2699–2702 (2006).
[CrossRef]

Oh, S. S.

Y. H. Kang, S. S. Oh, Y.-S. Kim, and C.-G. Choi, “Fabrication of antireflection nanostructures by hybrid nano-patterning lithography,” Microelectron. Eng. 87(2), 125–128 (2010).
[CrossRef]

Pan, C.-L.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Peng, C.-Y.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Ray, M. A.

M. A. Ray, N. Shewmon, S. Bhawalkar, L. Jia, Y. Yang, and E. S. Daniels, “Submicrometer surface patterning using interfacial colloidal particle self-assembly,” Langmuir 25(13), 7265–7270 (2009).
[CrossRef] [PubMed]

Rose, K.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Rubner, M. F.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18(20), 2699–2702 (2006).
[CrossRef]

Sasaki, M.

M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4346–4349 (2002).
[CrossRef]

Schadt, M.

M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
[CrossRef] [PubMed]

Schaffer, E.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Shewmon, N.

M. A. Ray, N. Shewmon, S. Bhawalkar, L. Jia, Y. Yang, and E. S. Daniels, “Submicrometer surface patterning using interfacial colloidal particle self-assembly,” Langmuir 25(13), 7265–7270 (2009).
[CrossRef] [PubMed]

Song, Y. M.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17(23), 20991–20997 (2009).
[CrossRef] [PubMed]

Southwell, W. H.

Sporn, D.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Steiner, U.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Sun, Z.

Y. Li, J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, “Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings,” J. Mater. Chem. 19(13), 1806–1810 (2009).
[CrossRef]

Walheim, S.

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Walish, J.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18(20), 2699–2702 (2006).
[CrossRef]

Wang, S.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

Wang, Z.

Y. Li, J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, “Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings,” J. Mater. Chem. 19(13), 1806–1810 (2009).
[CrossRef]

Wittwer, V.

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Wu, W.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Wu, Z.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18(20), 2699–2702 (2006).
[CrossRef]

Yang, B.

Y. Li, J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, “Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings,” J. Mater. Chem. 19(13), 1806–1810 (2009).
[CrossRef]

Yang, C.-S.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolums,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yang, Y.

M. A. Ray, N. Shewmon, S. Bhawalkar, L. Jia, Y. Yang, and E. S. Daniels, “Submicrometer surface patterning using interfacial colloidal particle self-assembly,” Langmuir 25(13), 7265–7270 (2009).
[CrossRef] [PubMed]

Yi, D. K.

H. Y. Koo, D. K. Yi, S. J. Yoo, and D.-Y. Kim, “A snowman-like array of colloidal dimmers for antireflecting surfaces,” Adv. Mater. 16(3), 274–277 (2004).
[CrossRef]

Yoo, S. J.

H. Y. Koo, D. K. Yi, S. J. Yoo, and D.-Y. Kim, “A snowman-like array of colloidal dimmers for antireflecting surfaces,” Adv. Mater. 16(3), 274–277 (2004).
[CrossRef]

Yu, J. S.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17(23), 20991–20997 (2009).
[CrossRef] [PubMed]

Yu, J.-C.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolums,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yu, P.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolums,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yu, X. Z.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

Yu, Z.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Zhai, L.

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18(20), 2699–2702 (2006).
[CrossRef]

Zhang, J.

Y. Li, J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, “Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings,” J. Mater. Chem. 19(13), 1806–1810 (2009).
[CrossRef]

Zhu, S.

Y. Li, J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, “Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings,” J. Mater. Chem. 19(13), 1806–1810 (2009).
[CrossRef]

Adv. Mater.

P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolums,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[CrossRef]

Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18(20), 2699–2702 (2006).
[CrossRef]

H. Y. Koo, D. K. Yi, S. J. Yoo, and D.-Y. Kim, “A snowman-like array of colloidal dimmers for antireflecting surfaces,” Adv. Mater. 16(3), 274–277 (2004).
[CrossRef]

Appl. Phys. Lett.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photon. Technol. Lett. 14(8), 1064–1066 (2002).
[CrossRef]

J. Mater. Chem.

Y. Li, J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, “Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings,” J. Mater. Chem. 19(13), 1806–1810 (2009).
[CrossRef]

J. Vac. Sci. Technol. B

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Jpn. J. Appl. Phys.

M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4346–4349 (2002).
[CrossRef]

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 39(Part 2, No. 7B), L735–L737 (2000).
[CrossRef]

Langmuir

M. A. Ray, N. Shewmon, S. Bhawalkar, L. Jia, Y. Yang, and E. S. Daniels, “Submicrometer surface patterning using interfacial colloidal particle self-assembly,” Langmuir 25(13), 7265–7270 (2009).
[CrossRef] [PubMed]

Microelectron. Eng.

Y. H. Kang, S. S. Oh, Y.-S. Kim, and C.-G. Choi, “Fabrication of antireflection nanostructures by hybrid nano-patterning lithography,” Microelectron. Eng. 87(2), 125–128 (2010).
[CrossRef]

Nanotechnology

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997).
[CrossRef]

Nat. Nanotechnol.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Nature

M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Science

S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[CrossRef] [PubMed]

Small

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Thin Solid Films

A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999).
[CrossRef]

Other

E. Hecht, Optic 4th ed.(Addison Wesley, 2002), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Contour plot of the calculated reflectance of glass SWS in the shapes of (a) nanorod, (b) truncated cone, (c) perfect cone and (d) paraboloid as a function of height and wavelength at normal incidence for a period of 100 nm. The (e)-(h) corresponds to the average reflectance versus SWS height. The insets of (e)-(h) describe each schematic cross-sectional image.

Fig. 2
Fig. 2

(a) Schematic diagram of light propagation for the dual-side SWS integrated glass, and contour map of the reflectance for (b) the external reflection from the air to the glass and (c) the internal reflection from the glass to the air as a function of period and wavelength for the height of 200 nm.

Fig. 3
Fig. 3

Calculated transmittance spectra of single-side SWS integrated glasses with different grating periods at normal incidence. Calculated transmittance of dual-side polished glass is shown as a reference.

Fig. 4
Fig. 4

Measured transmittance of the fabricated SWS on glass substrates with different periods as a function of wavelength at normal incidence. Inset shows the SEM images of the fabricated SWS on glass substrate with period of 300 nm and 400 nm. Scale bar of SEM images corresponds to 1 μm. Measured transmittance of dual-side polished glass is shown as a reference. The dashed lines show the calculated curves.

Fig. 5
Fig. 5

Calculated transmittance spectra of dual-side SWS integrated glasses at normal incidence (a) with different grating periods and (b) with different grating heights. Calculated transmittance of dual-side polished glass is shown in (a) as a reference.

Fig. 6
Fig. 6

(a) Angle dependent transmittance spectra of bare glass with flat surface (dashed line) and dual-side SWS integrated glass with a period of 300 nm and a height of 200 nm (solid line) for θi = 0, 10, 20, 30, 40, and 50°. Arrows indicate the drop points of each transmittance curve. (b) Drop points at each incidence angle for the periods of 200 nm (rectangle) and 300 nm (circle).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin θ r , m = m λ Λ n + sin θ i ,

Metrics