Abstract

In this paper long-haul, single channel, polarization multiplexed 16-state quadrature amplitude modulation (PDM-QAM-16) transmission at 112Gbit/s is investigated. Novel digital signal processing techniques are used to perform carrier phase estimation and symbol estimation, in combination with nonlinear digital backpropagation. The results obtained demonstrate that the use of digital nonlinear backpropagation increases the optimum launch power from −4dBm to −1dBm with a consequent increase in maximum reach from 1440km to 2400km, which is a record transmission distance for QAM-16 reported to date for an SMF link with EDFAs only. Furthermore, experimental measurements are supported by simulations, based on the link used in the experiment.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Renaudier, G. Charlet, O. Bertran-Pardo, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, “Transmission of 100 Gb/s coherent PDM-QPSK over 16 x 100 km of standard fiber with allerbium amplifiers,” Opt. Express 17(7), 5112–5119 (2009).
    [CrossRef] [PubMed]
  2. G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O. B. Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J.-Y. Dupuy, and S. Bigo, “Transmission of 16.4-Tbit/s capacity over 2550km using PDM QPSK modulation format and coherent detection,” J. Lightwave Technol. 27(3), 153–157 (2009).
    [CrossRef]
  3. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
    [CrossRef]
  4. L. Molle, M. Seimetz, D.-D. Gross, R. Freund, and M. Rohde, “Polarization multiplexed 20 Gbaud square 16QAM long-haul transmission over 1120km using EDFA amplification,” Proc. of ECOC, paper 8.4.4, Vienna, Austria (2009).
  5. Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, “Unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using digital coherent receiver,” Opt. Express 17(3), 1435–1441 (2009).
    [CrossRef] [PubMed]
  6. S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
    [CrossRef]
  7. J. Yu, X. Zhou, S. Gupta, Y.-K. Huang, and M.-F. Huang, “A novel scheme to generate 112.8Gb/s PM-RZ-64QAM optical signal,” IEEE Photon. Technol. Lett. 22(2), 115–117 (2010).
    [CrossRef]
  8. K. Miyauchi, S. Seki, and H. Ishio, “New technique for generating and detecting multilevel signal formats,” IEEE Trans. Commun. 24(2), 263–267 (1976).
    [CrossRef]
  9. T. Sakamoto, A. Chiba, and T. Kawanishi, “50-km SMF transmission of 50-Gb/s 16QAM generated by quad-parallel MZM,” Proc. of ECOC, paper Tu.1.E.3, Brussels, Belgium (2008).
  10. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and Extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection”, Proc. OFC, paper PDPB7, Sam Diego, USA (2010).
  11. H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett. 22(5), 344–346 (2010).
    [CrossRef]
  12. C. R. Doerr, P. J. Winzer, L. Zhang, L. L. Buhl, and N. J. Sauer, “Monolithic InP 16-QAM modulator,” Proc. of OFC, paper PDP20, San Diego, USA (2008).
  13. X. Zhou, and J. Yu, “200-Gb/s PDM-16QAM generation using a new synthesizing method,” Proc. of ECOC, paper 10.3.5, Vienna, Austria (2009).
  14. S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Experimental investigation of PDM-QAM16 at 112 Gbit/s over 2400 km,”, Proc. of OFC, paper OMJ6, San Diego, USA (2010).
  15. S. Makovejs, G. Gavioli, V. Mikhailov, R. I. Killey, and P. Bayvel, “Experimental and numerical investigation of bit-wise phase-control OTDM transmission,” Opt. Express 16(23), 18725–18730 (2008).
    [CrossRef]
  16. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  17. D. S. Millar, S. Makovejs, V. Mikhailov, R. I. Killey, P. Bayvel, and S. J. Savory, “Experimental comparison of nonlinear compensation in long-haul PDM-QPSK transmission at 42.7 and 85.4 Gb/s,” Proc. of ECOC, paper 9.4.4, Vienna, Austria (2009).
  18. I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
    [CrossRef]
  19. D. C. Rife and R. C. Boorstyn, “Single-tone parameter estimation from discrete-time observations,” IEEE Trans. Inf. Theory 20(5), 591–598 (1974).
    [CrossRef]
  20. J. G. Proakis, and M. Salehi, Digital Communications (McGraw-Hill, 5th Ed., 2008), pp. 296–304.
  21. S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Inf. Theory 28(2), 129–137 (1982).
    [CrossRef]
  22. A. Chiba, T. Sakamoto, and T. Kawanishi, “Adaptive symbol discrimination method for distorted multilevel optical signal and its application to decoding of high-speed optical quadrature amplitude modulation,” Proc. of OFC, paper JWA63, San Diego, USA (2008).

2010

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[CrossRef]

J. Yu, X. Zhou, S. Gupta, Y.-K. Huang, and M.-F. Huang, “A novel scheme to generate 112.8Gb/s PM-RZ-64QAM optical signal,” IEEE Photon. Technol. Lett. 22(2), 115–117 (2010).
[CrossRef]

H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett. 22(5), 344–346 (2010).
[CrossRef]

P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010).
[CrossRef]

2009

2008

1982

S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Inf. Theory 28(2), 129–137 (1982).
[CrossRef]

1976

K. Miyauchi, S. Seki, and H. Ishio, “New technique for generating and detecting multilevel signal formats,” IEEE Trans. Commun. 24(2), 263–267 (1976).
[CrossRef]

1974

D. C. Rife and R. C. Boorstyn, “Single-tone parameter estimation from discrete-time observations,” IEEE Trans. Inf. Theory 20(5), 591–598 (1974).
[CrossRef]

Achouche, M.

Bayvel, P.

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[CrossRef]

S. Makovejs, G. Gavioli, V. Mikhailov, R. I. Killey, and P. Bayvel, “Experimental and numerical investigation of bit-wise phase-control OTDM transmission,” Opt. Express 16(23), 18725–18730 (2008).
[CrossRef]

Bertran-Pardo, O.

Bigo, S.

Blache, F.

Boorstyn, R. C.

D. C. Rife and R. C. Boorstyn, “Single-tone parameter estimation from discrete-time observations,” IEEE Trans. Inf. Theory 20(5), 591–598 (1974).
[CrossRef]

Boutin, A.

Buhl, L. L.

Charlet, G.

Doerr, C. R.

Dupuy, J.-Y.

Fatadin, I.

Gavioli, G.

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[CrossRef]

S. Makovejs, G. Gavioli, V. Mikhailov, R. I. Killey, and P. Bayvel, “Experimental and numerical investigation of bit-wise phase-control OTDM transmission,” Opt. Express 16(23), 18725–18730 (2008).
[CrossRef]

Gnauck, A. H.

Goh, T.

H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett. 22(5), 344–346 (2010).
[CrossRef]

Gupta, S.

J. Yu, X. Zhou, S. Gupta, Y.-K. Huang, and M.-F. Huang, “A novel scheme to generate 112.8Gb/s PM-RZ-64QAM optical signal,” IEEE Photon. Technol. Lett. 22(2), 115–117 (2010).
[CrossRef]

Huang, M.-F.

J. Yu, X. Zhou, S. Gupta, Y.-K. Huang, and M.-F. Huang, “A novel scheme to generate 112.8Gb/s PM-RZ-64QAM optical signal,” IEEE Photon. Technol. Lett. 22(2), 115–117 (2010).
[CrossRef]

Huang, Y.-K.

J. Yu, X. Zhou, S. Gupta, Y.-K. Huang, and M.-F. Huang, “A novel scheme to generate 112.8Gb/s PM-RZ-64QAM optical signal,” IEEE Photon. Technol. Lett. 22(2), 115–117 (2010).
[CrossRef]

Igarashi, K.

Ishio, H.

K. Miyauchi, S. Seki, and H. Ishio, “New technique for generating and detecting multilevel signal formats,” IEEE Trans. Commun. 24(2), 263–267 (1976).
[CrossRef]

Ives, D.

Kaneko, A.

H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett. 22(5), 344–346 (2010).
[CrossRef]

Katoh, K.

Kikuchi, K.

Killey, R. I.

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[CrossRef]

S. Makovejs, G. Gavioli, V. Mikhailov, R. I. Killey, and P. Bayvel, “Experimental and numerical investigation of bit-wise phase-control OTDM transmission,” Opt. Express 16(23), 18725–18730 (2008).
[CrossRef]

Lloyd, S. P.

S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Inf. Theory 28(2), 129–137 (1982).
[CrossRef]

Magarini, M.

Makovejs, S.

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[CrossRef]

S. Makovejs, G. Gavioli, V. Mikhailov, R. I. Killey, and P. Bayvel, “Experimental and numerical investigation of bit-wise phase-control OTDM transmission,” Opt. Express 16(23), 18725–18730 (2008).
[CrossRef]

Mardoyan, H.

Mikhailov, V.

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[CrossRef]

S. Makovejs, G. Gavioli, V. Mikhailov, R. I. Killey, and P. Bayvel, “Experimental and numerical investigation of bit-wise phase-control OTDM transmission,” Opt. Express 16(23), 18725–18730 (2008).
[CrossRef]

Millar, D. S.

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[CrossRef]

Miyauchi, K.

K. Miyauchi, S. Seki, and H. Ishio, “New technique for generating and detecting multilevel signal formats,” IEEE Trans. Commun. 24(2), 263–267 (1976).
[CrossRef]

Mori, Y.

Pardo, O. B.

Renaudier, J.

Rife, D. C.

D. C. Rife and R. C. Boorstyn, “Single-tone parameter estimation from discrete-time observations,” IEEE Trans. Inf. Theory 20(5), 591–598 (1974).
[CrossRef]

Sakamaki, Y.

H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett. 22(5), 344–346 (2010).
[CrossRef]

Salsi, M.

Savory, S. J.

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[CrossRef]

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[CrossRef]

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
[CrossRef] [PubMed]

Seki, S.

K. Miyauchi, S. Seki, and H. Ishio, “New technique for generating and detecting multilevel signal formats,” IEEE Trans. Commun. 24(2), 263–267 (1976).
[CrossRef]

Tran, P.

Verluise, F.

Winzer, P. J.

Yamada, T.

H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett. 22(5), 344–346 (2010).
[CrossRef]

Yamazaki, H.

H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett. 22(5), 344–346 (2010).
[CrossRef]

Yu, J.

J. Yu, X. Zhou, S. Gupta, Y.-K. Huang, and M.-F. Huang, “A novel scheme to generate 112.8Gb/s PM-RZ-64QAM optical signal,” IEEE Photon. Technol. Lett. 22(2), 115–117 (2010).
[CrossRef]

Zhang, C.

Zhou, X.

J. Yu, X. Zhou, S. Gupta, Y.-K. Huang, and M.-F. Huang, “A novel scheme to generate 112.8Gb/s PM-RZ-64QAM optical signal,” IEEE Photon. Technol. Lett. 22(2), 115–117 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010).
[CrossRef]

J. Yu, X. Zhou, S. Gupta, Y.-K. Huang, and M.-F. Huang, “A novel scheme to generate 112.8Gb/s PM-RZ-64QAM optical signal,” IEEE Photon. Technol. Lett. 22(2), 115–117 (2010).
[CrossRef]

H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett. 22(5), 344–346 (2010).
[CrossRef]

IEEE Trans. Commun.

K. Miyauchi, S. Seki, and H. Ishio, “New technique for generating and detecting multilevel signal formats,” IEEE Trans. Commun. 24(2), 263–267 (1976).
[CrossRef]

IEEE Trans. Inf. Theory

D. C. Rife and R. C. Boorstyn, “Single-tone parameter estimation from discrete-time observations,” IEEE Trans. Inf. Theory 20(5), 591–598 (1974).
[CrossRef]

S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Inf. Theory 28(2), 129–137 (1982).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

A. Chiba, T. Sakamoto, and T. Kawanishi, “Adaptive symbol discrimination method for distorted multilevel optical signal and its application to decoding of high-speed optical quadrature amplitude modulation,” Proc. of OFC, paper JWA63, San Diego, USA (2008).

J. G. Proakis, and M. Salehi, Digital Communications (McGraw-Hill, 5th Ed., 2008), pp. 296–304.

T. Sakamoto, A. Chiba, and T. Kawanishi, “50-km SMF transmission of 50-Gb/s 16QAM generated by quad-parallel MZM,” Proc. of ECOC, paper Tu.1.E.3, Brussels, Belgium (2008).

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and Extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection”, Proc. OFC, paper PDPB7, Sam Diego, USA (2010).

C. R. Doerr, P. J. Winzer, L. Zhang, L. L. Buhl, and N. J. Sauer, “Monolithic InP 16-QAM modulator,” Proc. of OFC, paper PDP20, San Diego, USA (2008).

X. Zhou, and J. Yu, “200-Gb/s PDM-16QAM generation using a new synthesizing method,” Proc. of ECOC, paper 10.3.5, Vienna, Austria (2009).

S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Experimental investigation of PDM-QAM16 at 112 Gbit/s over 2400 km,”, Proc. of OFC, paper OMJ6, San Diego, USA (2010).

L. Molle, M. Seimetz, D.-D. Gross, R. Freund, and M. Rohde, “Polarization multiplexed 20 Gbaud square 16QAM long-haul transmission over 1120km using EDFA amplification,” Proc. of ECOC, paper 8.4.4, Vienna, Austria (2009).

D. S. Millar, S. Makovejs, V. Mikhailov, R. I. Killey, P. Bayvel, and S. J. Savory, “Experimental comparison of nonlinear compensation in long-haul PDM-QPSK transmission at 42.7 and 85.4 Gb/s,” Proc. of ECOC, paper 9.4.4, Vienna, Austria (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental set-up to generate and transmit 112Gbit/s (14Gbaud) PDM-QAM-16 signal (PD – photodetector, dB – attenuator, ∆t – delay line, Φ – phase shifter).

Fig. 2
Fig. 2

Ideal constellations showing interferometer phase shifts of (a) 0°, (b) 45° and (c) 90°.

Fig. 3
Fig. 3

Eye diagrams of a QAM-16 signal at 14Gbaud. (a) Single polarization. (b) Polarization multiplexed.

Fig. 4
Fig. 4

Block diagram of carrier phase estimation algorithm. Block arrows indicate element-wise register operations while solid arrows indicate single element operations.

Fig. 5
Fig. 5

Illustration of two different BER calculation methods. (a) With theoretical rectangular decision boundaries. (b) With optimized rectangular decision boundaries. (c) With minimum Euclidean distance decision boundaries. Bit error rates are reduced from 2.0x10−3 (a) to 5.3x10−4 (b) and 1.2x10−4 (c).

Fig. 6
Fig. 6

Receiver sensitivity of PDM-QAM-16 at 112Gbit/s

Fig. 7
Fig. 7

Experimentally measured impact of the input launch power on the Q-factor for several fixed distances. (a) With linear compensation only. (b) With nonlinearity compensation

Fig. 8
Fig. 8

Performance comparison of transmission with and without NLC. (a) Experimentally measured optimum Q-factor versus transmission distance. (b) Impact of input launch power on the maximum reach at the FEC limit of 3x10−3.

Fig. 9
Fig. 9

Experimental PDM-QAM-16 constellation diagrams at 112Gbit/s. (a) Back-to-back without noise loading. (b) 1440km without NLC at −4dBm. (c) 1440km with NLC at −4dBm. (d) 2400km without NLC at −1dBm. (e) 2400km with NLC at −1dBm.

Tables (1)

Tables Icon

Table 1 Fiber and link parameters

Metrics