Abstract

Nanoporous Solid-Liquid core waveguides were prepared by UV induced surface modification of hydrophobic nanoporous polymers. With this method, the index contrast (δn = 0.20) is a result of selective water infiltration. The waveguide core is defined by UV light, rendering the exposed part of a nanoporous polymer block hydrophilic. A propagation loss of 0.62 dB/mm and a bend loss of 0.81 dB/90° for bend radius as low as 1.75 mm was obtained in these multimode waveguides.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  2. M. P. Duggan, T. McCreedy, and J. W. Aylott, “A non-invasive analysis method for on-chip spectrophotometric detection using liquid-core waveguiding within a 3D architecture,” Analyst (Lond.) 128(11), 1336–1340 (2003).
    [CrossRef]
  3. M. Holtz, P. Dasgupta, and G. Zhang, “Small-volume raman spectroscopy with a liquid core waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
    [CrossRef]
  4. H. Schmidt and A. R. Hawkins, “Optofluidic waveguides I. Concepts and implementations,” Microfluidics and Nanofluidics 4(1–2), 3–16 (2008).
    [CrossRef] [PubMed]
  5. A. R. Hawkins and H. Schmidt, “Optofluidic waveguides II. Fabrication and structures,” Microfluidics and Nanofluidics 4(1–2), 17–32 (2008).
    [CrossRef]
  6. A. W. Snyder and J. D. Love, “Total Internal Reflection (TIR),” in Optical Waveguide theory, (Chapman and Hall, London, 1983)
  7. H. Takiguchi, A. Tsubata, M. Miyata, T. Odake, H. Hotta, T. Umemura, and K. Tsunoda, “Liquid core waveguide spectrophotometry for the sensitive determination of nitrite in river water samples,” Anal. Sci. 22(7), 1017–1019 (2006).
    [CrossRef] [PubMed]
  8. P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
    [CrossRef]
  9. V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, “Development of a Miniaturized Liquid Core Waveguide System With Nanoporous Dielectric Cladding-A Potential Biosensing Platform,” IEEE Sens. J. 9(12), 1711–1718 (2009).
    [CrossRef]
  10. W. Risk, H. Kim, R. Miller, H. Temkin, and S. Gangopadhyay, “Optical waveguides with an aqueous core and a low-index nanoporous cladding,” Opt. Express 12(26), 6446–6455 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-26-6446 .
    [CrossRef] [PubMed]
  11. S. Ndoni, M. E. Vigild, and R. H. Berg, “Nanoporous materials with spherical and gyroid cavities created by quantitative etching of polydimethylsiloxane in polystyrene-polydimethylsiloxane block copolymers,” J. Am. Chem. Soc. 125(44), 13366–13367 (2003).
    [CrossRef] [PubMed]
  12. M. Hansen, M. Vigild, R. Berg, and S. Ndoni, “Nanoporous crosslinked polyisoprene from polyisoprene - Polydimethylsiloxane block copolymer,” Polym. Bull. 51(5–6), 403–409 (2004).
    [CrossRef]
  13. F. Guo, J. W. Andreasen, M. E. Vigild, and S. Ndoni, “Influence of 1, 2-PB matrix cross-linking on structure and properties of selectively etched 1, 2-PB-b-PDMS block copolymers,” Macromolecules 40(10), 3669–3675 (2007).
    [CrossRef]
  14. S. Ndoni, C. M. Papadakis, F. S. Bates, and K. Almdal, “Laboratory-scale setup for anionic-polymerization under inert atmosphere,” Rev. Sci. Instrum. 66(2), 1090–1095 (1995).
    [CrossRef]
  15. S. Ndoni, L. Li, L. Schulte, P. P. Szewczykowski, T. W. Hansen, F. Guo, R. H. Berg, and M. E. Vigild, “Controlled Photooxidation of Nanoporous Polymers,” Macromolecules 42(12), 3877–3880 (2009).
    [CrossRef]
  16. J. E . Mark, in Polymer data handbook, (Oxford University Press, New York, 1999)
  17. C. Adam, J. Lacoste, and J. Lemaire, “Photo-oxidation of elastomeric materials Part IV–Photo-oxidation of 1,2-polybutadiene,” Polym. Degrad. Stabil. 29(3), 305–320 (1990).
    [CrossRef]
  18. I. Papakonstantinou, K. Wang, D. R. Selviah, and F. A. Fernández, “Transition, radiation and propagation loss in polymer multimode waveguide bends,” Opt. Express 15(2), 669–679 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-669 .
    [CrossRef] [PubMed]
  19. S. Musa, A. Borreman, A. A. M. Kok, M. B. J. Diemeer, and A. Driessen, “Experimental study of bent multimode optical waveguides,” Appl. Opt. 43(30), 5705–5707 (2004).
    [CrossRef] [PubMed]
  20. P. Steinvurzel, B. Kuhlmey, T. White, M. Steel, C. de Sterke, and B. Eggleton, “Long wavelength anti-resonant guidance in high index inclusion microstructured fibers,” Opt. Express 12(22), 5424–5433 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-22-5424 .
    [CrossRef] [PubMed]
  21. A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express 15(7), 3962–3967 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-3962 .
    [CrossRef] [PubMed]
  22. R. Manor, A. Datta, I. Ahmad, M. Holtz, S. Gangopadhyay, and T. Dallas, “Microfabrication and characterization of liquid core waveguide glass channels coated with Teflon AF,” IEEE Sens. J. 3(6), 687–692 (2003).
    [CrossRef]
  23. C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
    [CrossRef] [PubMed]
  24. D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, “Optical characterization of arch-shaped ARROW waveguides with liquid cores,” Opt. Express 13(26), 10564–10570 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-26-10564 .
    [CrossRef] [PubMed]
  25. D. Qi and A. J. Berger, “Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy,” Appl. Opt. 46(10), 1726–1734 (2007).
    [CrossRef] [PubMed]

2009 (2)

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, “Development of a Miniaturized Liquid Core Waveguide System With Nanoporous Dielectric Cladding-A Potential Biosensing Platform,” IEEE Sens. J. 9(12), 1711–1718 (2009).
[CrossRef]

S. Ndoni, L. Li, L. Schulte, P. P. Szewczykowski, T. W. Hansen, F. Guo, R. H. Berg, and M. E. Vigild, “Controlled Photooxidation of Nanoporous Polymers,” Macromolecules 42(12), 3877–3880 (2009).
[CrossRef]

2008 (2)

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides I. Concepts and implementations,” Microfluidics and Nanofluidics 4(1–2), 3–16 (2008).
[CrossRef] [PubMed]

A. R. Hawkins and H. Schmidt, “Optofluidic waveguides II. Fabrication and structures,” Microfluidics and Nanofluidics 4(1–2), 17–32 (2008).
[CrossRef]

2007 (6)

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

F. Guo, J. W. Andreasen, M. E. Vigild, and S. Ndoni, “Influence of 1, 2-PB matrix cross-linking on structure and properties of selectively etched 1, 2-PB-b-PDMS block copolymers,” Macromolecules 40(10), 3669–3675 (2007).
[CrossRef]

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
[CrossRef] [PubMed]

I. Papakonstantinou, K. Wang, D. R. Selviah, and F. A. Fernández, “Transition, radiation and propagation loss in polymer multimode waveguide bends,” Opt. Express 15(2), 669–679 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-669 .
[CrossRef] [PubMed]

D. Qi and A. J. Berger, “Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy,” Appl. Opt. 46(10), 1726–1734 (2007).
[CrossRef] [PubMed]

A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express 15(7), 3962–3967 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-7-3962 .
[CrossRef] [PubMed]

2006 (2)

H. Takiguchi, A. Tsubata, M. Miyata, T. Odake, H. Hotta, T. Umemura, and K. Tsunoda, “Liquid core waveguide spectrophotometry for the sensitive determination of nitrite in river water samples,” Anal. Sci. 22(7), 1017–1019 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (4)

2003 (3)

S. Ndoni, M. E. Vigild, and R. H. Berg, “Nanoporous materials with spherical and gyroid cavities created by quantitative etching of polydimethylsiloxane in polystyrene-polydimethylsiloxane block copolymers,” J. Am. Chem. Soc. 125(44), 13366–13367 (2003).
[CrossRef] [PubMed]

M. P. Duggan, T. McCreedy, and J. W. Aylott, “A non-invasive analysis method for on-chip spectrophotometric detection using liquid-core waveguiding within a 3D architecture,” Analyst (Lond.) 128(11), 1336–1340 (2003).
[CrossRef]

R. Manor, A. Datta, I. Ahmad, M. Holtz, S. Gangopadhyay, and T. Dallas, “Microfabrication and characterization of liquid core waveguide glass channels coated with Teflon AF,” IEEE Sens. J. 3(6), 687–692 (2003).
[CrossRef]

1999 (1)

M. Holtz, P. Dasgupta, and G. Zhang, “Small-volume raman spectroscopy with a liquid core waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
[CrossRef]

1995 (1)

S. Ndoni, C. M. Papadakis, F. S. Bates, and K. Almdal, “Laboratory-scale setup for anionic-polymerization under inert atmosphere,” Rev. Sci. Instrum. 66(2), 1090–1095 (1995).
[CrossRef]

1990 (1)

C. Adam, J. Lacoste, and J. Lemaire, “Photo-oxidation of elastomeric materials Part IV–Photo-oxidation of 1,2-polybutadiene,” Polym. Degrad. Stabil. 29(3), 305–320 (1990).
[CrossRef]

Adam, C.

C. Adam, J. Lacoste, and J. Lemaire, “Photo-oxidation of elastomeric materials Part IV–Photo-oxidation of 1,2-polybutadiene,” Polym. Degrad. Stabil. 29(3), 305–320 (1990).
[CrossRef]

Ahmad, I.

R. Manor, A. Datta, I. Ahmad, M. Holtz, S. Gangopadhyay, and T. Dallas, “Microfabrication and characterization of liquid core waveguide glass channels coated with Teflon AF,” IEEE Sens. J. 3(6), 687–692 (2003).
[CrossRef]

Almdal, K.

S. Ndoni, C. M. Papadakis, F. S. Bates, and K. Almdal, “Laboratory-scale setup for anionic-polymerization under inert atmosphere,” Rev. Sci. Instrum. 66(2), 1090–1095 (1995).
[CrossRef]

Andreasen, J. W.

F. Guo, J. W. Andreasen, M. E. Vigild, and S. Ndoni, “Influence of 1, 2-PB matrix cross-linking on structure and properties of selectively etched 1, 2-PB-b-PDMS block copolymers,” Macromolecules 40(10), 3669–3675 (2007).
[CrossRef]

Aylott, J. W.

M. P. Duggan, T. McCreedy, and J. W. Aylott, “A non-invasive analysis method for on-chip spectrophotometric detection using liquid-core waveguiding within a 3D architecture,” Analyst (Lond.) 128(11), 1336–1340 (2003).
[CrossRef]

Backhouse, C. J.

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
[CrossRef] [PubMed]

Barber, J. P.

Bates, F. S.

S. Ndoni, C. M. Papadakis, F. S. Bates, and K. Almdal, “Laboratory-scale setup for anionic-polymerization under inert atmosphere,” Rev. Sci. Instrum. 66(2), 1090–1095 (1995).
[CrossRef]

Berg, R.

M. Hansen, M. Vigild, R. Berg, and S. Ndoni, “Nanoporous crosslinked polyisoprene from polyisoprene - Polydimethylsiloxane block copolymer,” Polym. Bull. 51(5–6), 403–409 (2004).
[CrossRef]

Berg, R. H.

S. Ndoni, L. Li, L. Schulte, P. P. Szewczykowski, T. W. Hansen, F. Guo, R. H. Berg, and M. E. Vigild, “Controlled Photooxidation of Nanoporous Polymers,” Macromolecules 42(12), 3877–3880 (2009).
[CrossRef]

S. Ndoni, M. E. Vigild, and R. H. Berg, “Nanoporous materials with spherical and gyroid cavities created by quantitative etching of polydimethylsiloxane in polystyrene-polydimethylsiloxane block copolymers,” J. Am. Chem. Soc. 125(44), 13366–13367 (2003).
[CrossRef] [PubMed]

Berger, A. J.

Bliss, C. L.

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
[CrossRef] [PubMed]

Borreman, A.

Dallas, T.

R. Manor, A. Datta, I. Ahmad, M. Holtz, S. Gangopadhyay, and T. Dallas, “Microfabrication and characterization of liquid core waveguide glass channels coated with Teflon AF,” IEEE Sens. J. 3(6), 687–692 (2003).
[CrossRef]

Dasgupta, P.

M. Holtz, P. Dasgupta, and G. Zhang, “Small-volume raman spectroscopy with a liquid core waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
[CrossRef]

Datta, A.

R. Manor, A. Datta, I. Ahmad, M. Holtz, S. Gangopadhyay, and T. Dallas, “Microfabrication and characterization of liquid core waveguide glass channels coated with Teflon AF,” IEEE Sens. J. 3(6), 687–692 (2003).
[CrossRef]

de Sterke, C.

Diemeer, M. B. J.

Driessen, A.

Duggan, M. P.

M. P. Duggan, T. McCreedy, and J. W. Aylott, “A non-invasive analysis method for on-chip spectrophotometric detection using liquid-core waveguiding within a 3D architecture,” Analyst (Lond.) 128(11), 1336–1340 (2003).
[CrossRef]

Eggleton, B.

Fernández, F. A.

Gangopadhyay, K.

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, “Development of a Miniaturized Liquid Core Waveguide System With Nanoporous Dielectric Cladding-A Potential Biosensing Platform,” IEEE Sens. J. 9(12), 1711–1718 (2009).
[CrossRef]

Gangopadhyay, S.

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, “Development of a Miniaturized Liquid Core Waveguide System With Nanoporous Dielectric Cladding-A Potential Biosensing Platform,” IEEE Sens. J. 9(12), 1711–1718 (2009).
[CrossRef]

W. Risk, H. Kim, R. Miller, H. Temkin, and S. Gangopadhyay, “Optical waveguides with an aqueous core and a low-index nanoporous cladding,” Opt. Express 12(26), 6446–6455 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-26-6446 .
[CrossRef] [PubMed]

R. Manor, A. Datta, I. Ahmad, M. Holtz, S. Gangopadhyay, and T. Dallas, “Microfabrication and characterization of liquid core waveguide glass channels coated with Teflon AF,” IEEE Sens. J. 3(6), 687–692 (2003).
[CrossRef]

Guo, F.

S. Ndoni, L. Li, L. Schulte, P. P. Szewczykowski, T. W. Hansen, F. Guo, R. H. Berg, and M. E. Vigild, “Controlled Photooxidation of Nanoporous Polymers,” Macromolecules 42(12), 3877–3880 (2009).
[CrossRef]

F. Guo, J. W. Andreasen, M. E. Vigild, and S. Ndoni, “Influence of 1, 2-PB matrix cross-linking on structure and properties of selectively etched 1, 2-PB-b-PDMS block copolymers,” Macromolecules 40(10), 3669–3675 (2007).
[CrossRef]

Hansen, M.

M. Hansen, M. Vigild, R. Berg, and S. Ndoni, “Nanoporous crosslinked polyisoprene from polyisoprene - Polydimethylsiloxane block copolymer,” Polym. Bull. 51(5–6), 403–409 (2004).
[CrossRef]

Hansen, T. W.

S. Ndoni, L. Li, L. Schulte, P. P. Szewczykowski, T. W. Hansen, F. Guo, R. H. Berg, and M. E. Vigild, “Controlled Photooxidation of Nanoporous Polymers,” Macromolecules 42(12), 3877–3880 (2009).
[CrossRef]

Hawkins, A. R.

A. R. Hawkins and H. Schmidt, “Optofluidic waveguides II. Fabrication and structures,” Microfluidics and Nanofluidics 4(1–2), 17–32 (2008).
[CrossRef]

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides I. Concepts and implementations,” Microfluidics and Nanofluidics 4(1–2), 3–16 (2008).
[CrossRef] [PubMed]

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, “Optical characterization of arch-shaped ARROW waveguides with liquid cores,” Opt. Express 13(26), 10564–10570 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-26-10564 .
[CrossRef] [PubMed]

Holtz, M.

R. Manor, A. Datta, I. Ahmad, M. Holtz, S. Gangopadhyay, and T. Dallas, “Microfabrication and characterization of liquid core waveguide glass channels coated with Teflon AF,” IEEE Sens. J. 3(6), 687–692 (2003).
[CrossRef]

M. Holtz, P. Dasgupta, and G. Zhang, “Small-volume raman spectroscopy with a liquid core waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
[CrossRef]

Hossain, M.

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, “Development of a Miniaturized Liquid Core Waveguide System With Nanoporous Dielectric Cladding-A Potential Biosensing Platform,” IEEE Sens. J. 9(12), 1711–1718 (2009).
[CrossRef]

Hotta, H.

H. Takiguchi, A. Tsubata, M. Miyata, T. Odake, H. Hotta, T. Umemura, and K. Tsunoda, “Liquid core waveguide spectrophotometry for the sensitive determination of nitrite in river water samples,” Anal. Sci. 22(7), 1017–1019 (2006).
[CrossRef] [PubMed]

Kim, H.

Kok, A. A. M.

Korampally, V.

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, “Development of a Miniaturized Liquid Core Waveguide System With Nanoporous Dielectric Cladding-A Potential Biosensing Platform,” IEEE Sens. J. 9(12), 1711–1718 (2009).
[CrossRef]

Kuhlmey, B.

Lacoste, J.

C. Adam, J. Lacoste, and J. Lemaire, “Photo-oxidation of elastomeric materials Part IV–Photo-oxidation of 1,2-polybutadiene,” Polym. Degrad. Stabil. 29(3), 305–320 (1990).
[CrossRef]

Lemaire, J.

C. Adam, J. Lacoste, and J. Lemaire, “Photo-oxidation of elastomeric materials Part IV–Photo-oxidation of 1,2-polybutadiene,” Polym. Degrad. Stabil. 29(3), 305–320 (1990).
[CrossRef]

Li, L.

S. Ndoni, L. Li, L. Schulte, P. P. Szewczykowski, T. W. Hansen, F. Guo, R. H. Berg, and M. E. Vigild, “Controlled Photooxidation of Nanoporous Polymers,” Macromolecules 42(12), 3877–3880 (2009).
[CrossRef]

Lunt, E. J.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, “Optical characterization of arch-shaped ARROW waveguides with liquid cores,” Opt. Express 13(26), 10564–10570 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-26-10564 .
[CrossRef] [PubMed]

Manor, R.

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, “Development of a Miniaturized Liquid Core Waveguide System With Nanoporous Dielectric Cladding-A Potential Biosensing Platform,” IEEE Sens. J. 9(12), 1711–1718 (2009).
[CrossRef]

R. Manor, A. Datta, I. Ahmad, M. Holtz, S. Gangopadhyay, and T. Dallas, “Microfabrication and characterization of liquid core waveguide glass channels coated with Teflon AF,” IEEE Sens. J. 3(6), 687–692 (2003).
[CrossRef]

McCreedy, T.

M. P. Duggan, T. McCreedy, and J. W. Aylott, “A non-invasive analysis method for on-chip spectrophotometric detection using liquid-core waveguiding within a 3D architecture,” Analyst (Lond.) 128(11), 1336–1340 (2003).
[CrossRef]

McMullin, J. N.

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
[CrossRef] [PubMed]

Measor, P.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

Miller, R.

Miyata, M.

H. Takiguchi, A. Tsubata, M. Miyata, T. Odake, H. Hotta, T. Umemura, and K. Tsunoda, “Liquid core waveguide spectrophotometry for the sensitive determination of nitrite in river water samples,” Anal. Sci. 22(7), 1017–1019 (2006).
[CrossRef] [PubMed]

Mukherjee, S.

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, “Development of a Miniaturized Liquid Core Waveguide System With Nanoporous Dielectric Cladding-A Potential Biosensing Platform,” IEEE Sens. J. 9(12), 1711–1718 (2009).
[CrossRef]

Musa, S.

Ndoni, S.

S. Ndoni, L. Li, L. Schulte, P. P. Szewczykowski, T. W. Hansen, F. Guo, R. H. Berg, and M. E. Vigild, “Controlled Photooxidation of Nanoporous Polymers,” Macromolecules 42(12), 3877–3880 (2009).
[CrossRef]

F. Guo, J. W. Andreasen, M. E. Vigild, and S. Ndoni, “Influence of 1, 2-PB matrix cross-linking on structure and properties of selectively etched 1, 2-PB-b-PDMS block copolymers,” Macromolecules 40(10), 3669–3675 (2007).
[CrossRef]

M. Hansen, M. Vigild, R. Berg, and S. Ndoni, “Nanoporous crosslinked polyisoprene from polyisoprene - Polydimethylsiloxane block copolymer,” Polym. Bull. 51(5–6), 403–409 (2004).
[CrossRef]

S. Ndoni, M. E. Vigild, and R. H. Berg, “Nanoporous materials with spherical and gyroid cavities created by quantitative etching of polydimethylsiloxane in polystyrene-polydimethylsiloxane block copolymers,” J. Am. Chem. Soc. 125(44), 13366–13367 (2003).
[CrossRef] [PubMed]

S. Ndoni, C. M. Papadakis, F. S. Bates, and K. Almdal, “Laboratory-scale setup for anionic-polymerization under inert atmosphere,” Rev. Sci. Instrum. 66(2), 1090–1095 (1995).
[CrossRef]

Odake, T.

H. Takiguchi, A. Tsubata, M. Miyata, T. Odake, H. Hotta, T. Umemura, and K. Tsunoda, “Liquid core waveguide spectrophotometry for the sensitive determination of nitrite in river water samples,” Anal. Sci. 22(7), 1017–1019 (2006).
[CrossRef] [PubMed]

Papadakis, C. M.

S. Ndoni, C. M. Papadakis, F. S. Bates, and K. Almdal, “Laboratory-scale setup for anionic-polymerization under inert atmosphere,” Rev. Sci. Instrum. 66(2), 1090–1095 (1995).
[CrossRef]

Papakonstantinou, I.

Polo-Parada, L.

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, “Development of a Miniaturized Liquid Core Waveguide System With Nanoporous Dielectric Cladding-A Potential Biosensing Platform,” IEEE Sens. J. 9(12), 1711–1718 (2009).
[CrossRef]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Qi, D.

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Risk, W.

Samuel, I. D. W.

Schmidt, H.

A. R. Hawkins and H. Schmidt, “Optofluidic waveguides II. Fabrication and structures,” Microfluidics and Nanofluidics 4(1–2), 17–32 (2008).
[CrossRef]

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides I. Concepts and implementations,” Microfluidics and Nanofluidics 4(1–2), 3–16 (2008).
[CrossRef] [PubMed]

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, “Optical characterization of arch-shaped ARROW waveguides with liquid cores,” Opt. Express 13(26), 10564–10570 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-26-10564 .
[CrossRef] [PubMed]

Schulte, L.

S. Ndoni, L. Li, L. Schulte, P. P. Szewczykowski, T. W. Hansen, F. Guo, R. H. Berg, and M. E. Vigild, “Controlled Photooxidation of Nanoporous Polymers,” Macromolecules 42(12), 3877–3880 (2009).
[CrossRef]

Seballos, L.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

Selviah, D. R.

Steel, M.

Steinvurzel, P.

Szewczykowski, P. P.

S. Ndoni, L. Li, L. Schulte, P. P. Szewczykowski, T. W. Hansen, F. Guo, R. H. Berg, and M. E. Vigild, “Controlled Photooxidation of Nanoporous Polymers,” Macromolecules 42(12), 3877–3880 (2009).
[CrossRef]

Takiguchi, H.

H. Takiguchi, A. Tsubata, M. Miyata, T. Odake, H. Hotta, T. Umemura, and K. Tsunoda, “Liquid core waveguide spectrophotometry for the sensitive determination of nitrite in river water samples,” Anal. Sci. 22(7), 1017–1019 (2006).
[CrossRef] [PubMed]

Temkin, H.

Town, G. E.

Tsubata, A.

H. Takiguchi, A. Tsubata, M. Miyata, T. Odake, H. Hotta, T. Umemura, and K. Tsunoda, “Liquid core waveguide spectrophotometry for the sensitive determination of nitrite in river water samples,” Anal. Sci. 22(7), 1017–1019 (2006).
[CrossRef] [PubMed]

Tsunoda, K.

H. Takiguchi, A. Tsubata, M. Miyata, T. Odake, H. Hotta, T. Umemura, and K. Tsunoda, “Liquid core waveguide spectrophotometry for the sensitive determination of nitrite in river water samples,” Anal. Sci. 22(7), 1017–1019 (2006).
[CrossRef] [PubMed]

Turnbull, G. A.

Umemura, T.

H. Takiguchi, A. Tsubata, M. Miyata, T. Odake, H. Hotta, T. Umemura, and K. Tsunoda, “Liquid core waveguide spectrophotometry for the sensitive determination of nitrite in river water samples,” Anal. Sci. 22(7), 1017–1019 (2006).
[CrossRef] [PubMed]

Vasdekis, A. E.

Vigild, M.

M. Hansen, M. Vigild, R. Berg, and S. Ndoni, “Nanoporous crosslinked polyisoprene from polyisoprene - Polydimethylsiloxane block copolymer,” Polym. Bull. 51(5–6), 403–409 (2004).
[CrossRef]

Vigild, M. E.

S. Ndoni, L. Li, L. Schulte, P. P. Szewczykowski, T. W. Hansen, F. Guo, R. H. Berg, and M. E. Vigild, “Controlled Photooxidation of Nanoporous Polymers,” Macromolecules 42(12), 3877–3880 (2009).
[CrossRef]

F. Guo, J. W. Andreasen, M. E. Vigild, and S. Ndoni, “Influence of 1, 2-PB matrix cross-linking on structure and properties of selectively etched 1, 2-PB-b-PDMS block copolymers,” Macromolecules 40(10), 3669–3675 (2007).
[CrossRef]

S. Ndoni, M. E. Vigild, and R. H. Berg, “Nanoporous materials with spherical and gyroid cavities created by quantitative etching of polydimethylsiloxane in polystyrene-polydimethylsiloxane block copolymers,” J. Am. Chem. Soc. 125(44), 13366–13367 (2003).
[CrossRef] [PubMed]

Wang, K.

White, T.

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yin, D.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

D. Yin, H. Schmidt, J. P. Barber, E. J. Lunt, and A. R. Hawkins, “Optical characterization of arch-shaped ARROW waveguides with liquid cores,” Opt. Express 13(26), 10564–10570 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-26-10564 .
[CrossRef] [PubMed]

Yun, M.

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, “Development of a Miniaturized Liquid Core Waveguide System With Nanoporous Dielectric Cladding-A Potential Biosensing Platform,” IEEE Sens. J. 9(12), 1711–1718 (2009).
[CrossRef]

Zhang, G.

M. Holtz, P. Dasgupta, and G. Zhang, “Small-volume raman spectroscopy with a liquid core waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
[CrossRef]

Zhang, J. Z.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

Anal. Chem. (1)

M. Holtz, P. Dasgupta, and G. Zhang, “Small-volume raman spectroscopy with a liquid core waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
[CrossRef]

Anal. Sci. (1)

H. Takiguchi, A. Tsubata, M. Miyata, T. Odake, H. Hotta, T. Umemura, and K. Tsunoda, “Liquid core waveguide spectrophotometry for the sensitive determination of nitrite in river water samples,” Anal. Sci. 22(7), 1017–1019 (2006).
[CrossRef] [PubMed]

Analyst (Lond.) (1)

M. P. Duggan, T. McCreedy, and J. W. Aylott, “A non-invasive analysis method for on-chip spectrophotometric detection using liquid-core waveguiding within a 3D architecture,” Analyst (Lond.) 128(11), 1336–1340 (2003).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

IEEE Sens. J. (2)

V. Korampally, S. Mukherjee, M. Hossain, R. Manor, M. Yun, K. Gangopadhyay, L. Polo-Parada, and S. Gangopadhyay, “Development of a Miniaturized Liquid Core Waveguide System With Nanoporous Dielectric Cladding-A Potential Biosensing Platform,” IEEE Sens. J. 9(12), 1711–1718 (2009).
[CrossRef]

R. Manor, A. Datta, I. Ahmad, M. Holtz, S. Gangopadhyay, and T. Dallas, “Microfabrication and characterization of liquid core waveguide glass channels coated with Teflon AF,” IEEE Sens. J. 3(6), 687–692 (2003).
[CrossRef]

J. Am. Chem. Soc. (1)

S. Ndoni, M. E. Vigild, and R. H. Berg, “Nanoporous materials with spherical and gyroid cavities created by quantitative etching of polydimethylsiloxane in polystyrene-polydimethylsiloxane block copolymers,” J. Am. Chem. Soc. 125(44), 13366–13367 (2003).
[CrossRef] [PubMed]

Lab Chip (1)

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
[CrossRef] [PubMed]

Macromolecules (2)

S. Ndoni, L. Li, L. Schulte, P. P. Szewczykowski, T. W. Hansen, F. Guo, R. H. Berg, and M. E. Vigild, “Controlled Photooxidation of Nanoporous Polymers,” Macromolecules 42(12), 3877–3880 (2009).
[CrossRef]

F. Guo, J. W. Andreasen, M. E. Vigild, and S. Ndoni, “Influence of 1, 2-PB matrix cross-linking on structure and properties of selectively etched 1, 2-PB-b-PDMS block copolymers,” Macromolecules 40(10), 3669–3675 (2007).
[CrossRef]

Microfluidics and Nanofluidics (2)

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides I. Concepts and implementations,” Microfluidics and Nanofluidics 4(1–2), 3–16 (2008).
[CrossRef] [PubMed]

A. R. Hawkins and H. Schmidt, “Optofluidic waveguides II. Fabrication and structures,” Microfluidics and Nanofluidics 4(1–2), 17–32 (2008).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Opt. Express (5)

Polym. Bull. (1)

M. Hansen, M. Vigild, R. Berg, and S. Ndoni, “Nanoporous crosslinked polyisoprene from polyisoprene - Polydimethylsiloxane block copolymer,” Polym. Bull. 51(5–6), 403–409 (2004).
[CrossRef]

Polym. Degrad. Stabil. (1)

C. Adam, J. Lacoste, and J. Lemaire, “Photo-oxidation of elastomeric materials Part IV–Photo-oxidation of 1,2-polybutadiene,” Polym. Degrad. Stabil. 29(3), 305–320 (1990).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Ndoni, C. M. Papadakis, F. S. Bates, and K. Almdal, “Laboratory-scale setup for anionic-polymerization under inert atmosphere,” Rev. Sci. Instrum. 66(2), 1090–1095 (1995).
[CrossRef]

Other (2)

J. E . Mark, in Polymer data handbook, (Oxford University Press, New York, 1999)

A. W. Snyder and J. D. Love, “Total Internal Reflection (TIR),” in Optical Waveguide theory, (Chapman and Hall, London, 1983)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic illustration of working principle of Liquid Core waveguiding n 1,2-PB nanoporous polymers (a) Polymer self assembly of PB-PDMS, (b) Minority block etched hydrophobic NP polymer, (c) Selectivity UV exposure using a UV mask in presence of oxygen, (d) Hydrophillic NP polymer formed at exposed regions, (e) Exposed region infiltrated with water have changed effective refractive index.

Fig. 2
Fig. 2

(a) Experimental setup for measuring propagation and bend loss in the NP LCW, (b) Loss (L) in waveguides with different lengths as a function of propagation length (PL). The solid curve is a linear fit to the measured data. (Inset) 1.5 × 1.5 cm UV mask designed for measuring propagation loss in NP polymer LCW.

Fig. 3
Fig. 3

Total loss (L) is plotted as a function of bend radius (R) for 90° bend waveguides. The solid curve is a polynomial fit to the measured data. (Inset) 1.5 × 1.5 cm UV mask designed with 90° bend waveguides with different bend radii ranging from 1.75 to 11.75 mm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n e f f 2 n 1 2 n e f f 2 + 2 = V 2 n 2 2 n 1 2 n 2 2 + 2 ,

Metrics