Abstract

We propose electron beam excitation assisted optical microscope, and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. H. Synge, "A suggested method for extending microscopic resolution into the ultra-microscopic region," Philos. Mag. 6, 356-362 (1928).
  2. E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature 237, 510-512 (1972).
    [CrossRef] [PubMed]
  3. D. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ /20," Appl. Phys. Lett. 44, 651-653 (1984).
    [CrossRef]
  4. E. Betzig and M. Isaacson, "Collection mode near-field scanning optical microscopy," Appl. Phys. Lett. 51, 2088-2090 (1987).
    [CrossRef]
  5. E. Betzig and J. K. Trautman, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
    [CrossRef] [PubMed]
  6. S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara and M. Ohtsu, "Fabrication of a triple tapered probe for nearfield optical spectroscopy in UV region based on selective etching of a multistep index fiber," Opt. Commun. 146, 45-48 (1998).
    [CrossRef]
  7. M. Ohtsu and H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum Publishers, New York, 1999).
    [CrossRef]
  8. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
    [CrossRef]
  9. I. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159-161 (1994).
    [CrossRef] [PubMed]
  10. M. Gu and P. C. Ke, "Image enhancement in near-field scanning optical microscopy with laser-trapped metallic particles," Opt. Lett. 24, 74-76 (1999).
    [CrossRef]
  11. J. G. Kim, T. H. Kim, H. Choi, Y. J. Yoon, Y. Jeong, N. C. Park, H. Yang and Y. P. Park, "Improved air-gap control for SIL-based near- field recording system," IEEE Trans. on Magn. 43, 811-813 (2007).
    [CrossRef]
  12. Y. Kawata, C. Egamia, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, "Nonoptically probing near-field microscopy," Opt. Commun. 161, 6-12 (1999).
    [CrossRef]
  13. E. Betzig, P. L. Finn, and J. S. Weiner, "Combined shear force and near-field scanning optical microscopy," Appl. Phys. Lett. 60, 2484-2486 (1992).
    [CrossRef]
  14. R. Toledo-Crow, P. C. Yang, Y. Chen, and M. Vaez-Iravani, "Near]field differential scanning optical microscope with atomic force regulation," Appl. Phys. Lett. 60, 2957-2959 (1992).
    [CrossRef]
  15. K. Karrai and R. D. Grober, "Piezoelectric tip]sample distance control for near field optical microscopes," Appl. Phys. Lett. 66, 1842-1844 (1995).
    [CrossRef]
  16. J. W. P. Hsu, M. Lee, and B. S. Deaver, "A nonoptical tip?sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system," Rev. Sci. Instrum. 66, 3177-3181 (1995).
    [CrossRef]
  17. J. Barenz, O. Hollricher, and O. Marti, "An easy-to-use nonoptical shear-force distance control for near-field optical microscopes," Rev. Sci. Instrum. 67, 1912-1916 (1996).
    [CrossRef]
  18. M. Lee, B. McDaniel, and J. W. P. Hsu, "An impedance based non]contact feedback control system for scanning probe microscopes," Rev. Sci. Instrum. 67, 1468-1471 (1996).
    [CrossRef]
  19. D. P. Tsai and Y. Y. Lu, "Tapping-mode tuning fork force sensing for near-field scanning optical microscopy," Appl. Phys. Lett. 73, 2724-2726 (1998).
    [CrossRef]
  20. U. Fano, "A theory on cathode luminescence," Phys. Rev. 58, 544-553 (1940).
    [CrossRef]
  21. F. J. Garcıa de Abajo, "Optical excitations in electron microscopy," Rev. Mod. Phys. 82, 209-275 (2010).
    [CrossRef]
  22. A. R. Zanatta, C. T. M. Ribeiro and U. Jahn, "Photon and electron excitation of rare-earth-doped amorphous SiN films," J. Non-Cryst. Solids 338-340, 473-476 (2004).
    [CrossRef]
  23. E. Abbe, "Beiträge zur Theorie des Mikroskops und der mikroskopischen.Wahrnehmung," Arch. Mikrosk. Anat. 9,413-468 (1873).
    [CrossRef]
  24. D. C. Joy, Monte Carlo Modeling for Electron Microscopy and Microanalysis (Oxford University Press, 1995).
  25. T. Matsuyama and Y. Kawata, "Control of Alignment Regularity and Density of Nanodots by Changing Concentration and Molecular Weight of Self-Assembling Diblock Copolyme," Jpn. J. Appl. Phys. 45, L20-L22 (2006).
    [CrossRef]
  26. T. Matsuyama and Y. Kawata, "Fabrication of Fluorescent Nanodot Arrays on Metal Films for Application in Near-Field Optical Media," Jpn. J. Appl. Phys. 45, 1438-1441 (2006).
    [CrossRef]
  27. H. Masuda and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science 268, 1466-1468 (1995).
    [CrossRef] [PubMed]
  28. H. Yu, T. Iyoda, and T. Ikeda, "Photoinduced Alignment of Nanocylinders by Supramolecular Cooperative Motions," J. Am. Chem. Soc. 128, 11010-11011 (2006).
    [CrossRef] [PubMed]

2010

F. J. Garcıa de Abajo, "Optical excitations in electron microscopy," Rev. Mod. Phys. 82, 209-275 (2010).
[CrossRef]

2007

J. G. Kim, T. H. Kim, H. Choi, Y. J. Yoon, Y. Jeong, N. C. Park, H. Yang and Y. P. Park, "Improved air-gap control for SIL-based near- field recording system," IEEE Trans. on Magn. 43, 811-813 (2007).
[CrossRef]

2006

T. Matsuyama and Y. Kawata, "Control of Alignment Regularity and Density of Nanodots by Changing Concentration and Molecular Weight of Self-Assembling Diblock Copolyme," Jpn. J. Appl. Phys. 45, L20-L22 (2006).
[CrossRef]

T. Matsuyama and Y. Kawata, "Fabrication of Fluorescent Nanodot Arrays on Metal Films for Application in Near-Field Optical Media," Jpn. J. Appl. Phys. 45, 1438-1441 (2006).
[CrossRef]

H. Yu, T. Iyoda, and T. Ikeda, "Photoinduced Alignment of Nanocylinders by Supramolecular Cooperative Motions," J. Am. Chem. Soc. 128, 11010-11011 (2006).
[CrossRef] [PubMed]

2004

A. R. Zanatta, C. T. M. Ribeiro and U. Jahn, "Photon and electron excitation of rare-earth-doped amorphous SiN films," J. Non-Cryst. Solids 338-340, 473-476 (2004).
[CrossRef]

1999

Y. Kawata, C. Egamia, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, "Nonoptically probing near-field microscopy," Opt. Commun. 161, 6-12 (1999).
[CrossRef]

M. Gu and P. C. Ke, "Image enhancement in near-field scanning optical microscopy with laser-trapped metallic particles," Opt. Lett. 24, 74-76 (1999).
[CrossRef]

1998

S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara and M. Ohtsu, "Fabrication of a triple tapered probe for nearfield optical spectroscopy in UV region based on selective etching of a multistep index fiber," Opt. Commun. 146, 45-48 (1998).
[CrossRef]

D. P. Tsai and Y. Y. Lu, "Tapping-mode tuning fork force sensing for near-field scanning optical microscopy," Appl. Phys. Lett. 73, 2724-2726 (1998).
[CrossRef]

1996

J. Barenz, O. Hollricher, and O. Marti, "An easy-to-use nonoptical shear-force distance control for near-field optical microscopes," Rev. Sci. Instrum. 67, 1912-1916 (1996).
[CrossRef]

M. Lee, B. McDaniel, and J. W. P. Hsu, "An impedance based non]contact feedback control system for scanning probe microscopes," Rev. Sci. Instrum. 67, 1468-1471 (1996).
[CrossRef]

1995

K. Karrai and R. D. Grober, "Piezoelectric tip]sample distance control for near field optical microscopes," Appl. Phys. Lett. 66, 1842-1844 (1995).
[CrossRef]

J. W. P. Hsu, M. Lee, and B. S. Deaver, "A nonoptical tip?sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system," Rev. Sci. Instrum. 66, 3177-3181 (1995).
[CrossRef]

H. Masuda and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science 268, 1466-1468 (1995).
[CrossRef] [PubMed]

1994

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

I. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159-161 (1994).
[CrossRef] [PubMed]

1992

E. Betzig and J. K. Trautman, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[CrossRef] [PubMed]

E. Betzig, P. L. Finn, and J. S. Weiner, "Combined shear force and near-field scanning optical microscopy," Appl. Phys. Lett. 60, 2484-2486 (1992).
[CrossRef]

R. Toledo-Crow, P. C. Yang, Y. Chen, and M. Vaez-Iravani, "Near]field differential scanning optical microscope with atomic force regulation," Appl. Phys. Lett. 60, 2957-2959 (1992).
[CrossRef]

1987

E. Betzig and M. Isaacson, "Collection mode near-field scanning optical microscopy," Appl. Phys. Lett. 51, 2088-2090 (1987).
[CrossRef]

1984

D. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ /20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

1972

E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature 237, 510-512 (1972).
[CrossRef] [PubMed]

1940

U. Fano, "A theory on cathode luminescence," Phys. Rev. 58, 544-553 (1940).
[CrossRef]

1928

E. H. Synge, "A suggested method for extending microscopic resolution into the ultra-microscopic region," Philos. Mag. 6, 356-362 (1928).

1873

E. Abbe, "Beiträge zur Theorie des Mikroskops und der mikroskopischen.Wahrnehmung," Arch. Mikrosk. Anat. 9,413-468 (1873).
[CrossRef]

Abbe, E.

E. Abbe, "Beiträge zur Theorie des Mikroskops und der mikroskopischen.Wahrnehmung," Arch. Mikrosk. Anat. 9,413-468 (1873).
[CrossRef]

Ash, E. A.

E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature 237, 510-512 (1972).
[CrossRef] [PubMed]

Barenz, J.

J. Barenz, O. Hollricher, and O. Marti, "An easy-to-use nonoptical shear-force distance control for near-field optical microscopes," Rev. Sci. Instrum. 67, 1912-1916 (1996).
[CrossRef]

Betzig, E.

E. Betzig and J. K. Trautman, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[CrossRef] [PubMed]

E. Betzig, P. L. Finn, and J. S. Weiner, "Combined shear force and near-field scanning optical microscopy," Appl. Phys. Lett. 60, 2484-2486 (1992).
[CrossRef]

E. Betzig and M. Isaacson, "Collection mode near-field scanning optical microscopy," Appl. Phys. Lett. 51, 2088-2090 (1987).
[CrossRef]

Chen, Y.

R. Toledo-Crow, P. C. Yang, Y. Chen, and M. Vaez-Iravani, "Near]field differential scanning optical microscope with atomic force regulation," Appl. Phys. Lett. 60, 2957-2959 (1992).
[CrossRef]

Choi, H.

J. G. Kim, T. H. Kim, H. Choi, Y. J. Yoon, Y. Jeong, N. C. Park, H. Yang and Y. P. Park, "Improved air-gap control for SIL-based near- field recording system," IEEE Trans. on Magn. 43, 811-813 (2007).
[CrossRef]

Deaver, B. S.

J. W. P. Hsu, M. Lee, and B. S. Deaver, "A nonoptical tip?sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system," Rev. Sci. Instrum. 66, 3177-3181 (1995).
[CrossRef]

Denk, W.

D. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ /20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Egamia, C.

Y. Kawata, C. Egamia, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, "Nonoptically probing near-field microscopy," Opt. Commun. 161, 6-12 (1999).
[CrossRef]

Fano, U.

U. Fano, "A theory on cathode luminescence," Phys. Rev. 58, 544-553 (1940).
[CrossRef]

Finn, P. L.

E. Betzig, P. L. Finn, and J. S. Weiner, "Combined shear force and near-field scanning optical microscopy," Appl. Phys. Lett. 60, 2484-2486 (1992).
[CrossRef]

Fukuda, K.

H. Masuda and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science 268, 1466-1468 (1995).
[CrossRef] [PubMed]

Garcia de Abajo, F. J.

F. J. Garcıa de Abajo, "Optical excitations in electron microscopy," Rev. Mod. Phys. 82, 209-275 (2010).
[CrossRef]

Grober, R. D.

K. Karrai and R. D. Grober, "Piezoelectric tip]sample distance control for near field optical microscopes," Appl. Phys. Lett. 66, 1842-1844 (1995).
[CrossRef]

Gu, M.

Hollricher, O.

J. Barenz, O. Hollricher, and O. Marti, "An easy-to-use nonoptical shear-force distance control for near-field optical microscopes," Rev. Sci. Instrum. 67, 1912-1916 (1996).
[CrossRef]

Hsu, J. W. P.

M. Lee, B. McDaniel, and J. W. P. Hsu, "An impedance based non]contact feedback control system for scanning probe microscopes," Rev. Sci. Instrum. 67, 1468-1471 (1996).
[CrossRef]

J. W. P. Hsu, M. Lee, and B. S. Deaver, "A nonoptical tip?sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system," Rev. Sci. Instrum. 66, 3177-3181 (1995).
[CrossRef]

Ikeda, T.

H. Yu, T. Iyoda, and T. Ikeda, "Photoinduced Alignment of Nanocylinders by Supramolecular Cooperative Motions," J. Am. Chem. Soc. 128, 11010-11011 (2006).
[CrossRef] [PubMed]

Inouye, I.

Isaacson, M.

E. Betzig and M. Isaacson, "Collection mode near-field scanning optical microscopy," Appl. Phys. Lett. 51, 2088-2090 (1987).
[CrossRef]

Iyoda, T.

H. Yu, T. Iyoda, and T. Ikeda, "Photoinduced Alignment of Nanocylinders by Supramolecular Cooperative Motions," J. Am. Chem. Soc. 128, 11010-11011 (2006).
[CrossRef] [PubMed]

Jahn, U.

A. R. Zanatta, C. T. M. Ribeiro and U. Jahn, "Photon and electron excitation of rare-earth-doped amorphous SiN films," J. Non-Cryst. Solids 338-340, 473-476 (2004).
[CrossRef]

Jeong, Y.

J. G. Kim, T. H. Kim, H. Choi, Y. J. Yoon, Y. Jeong, N. C. Park, H. Yang and Y. P. Park, "Improved air-gap control for SIL-based near- field recording system," IEEE Trans. on Magn. 43, 811-813 (2007).
[CrossRef]

Karrai, K.

K. Karrai and R. D. Grober, "Piezoelectric tip]sample distance control for near field optical microscopes," Appl. Phys. Lett. 66, 1842-1844 (1995).
[CrossRef]

Kawata, S.

Kawata, Y.

T. Matsuyama and Y. Kawata, "Control of Alignment Regularity and Density of Nanodots by Changing Concentration and Molecular Weight of Self-Assembling Diblock Copolyme," Jpn. J. Appl. Phys. 45, L20-L22 (2006).
[CrossRef]

T. Matsuyama and Y. Kawata, "Fabrication of Fluorescent Nanodot Arrays on Metal Films for Application in Near-Field Optical Media," Jpn. J. Appl. Phys. 45, 1438-1441 (2006).
[CrossRef]

Y. Kawata, C. Egamia, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, "Nonoptically probing near-field microscopy," Opt. Commun. 161, 6-12 (1999).
[CrossRef]

Ke, P. C.

Kim, J. G.

J. G. Kim, T. H. Kim, H. Choi, Y. J. Yoon, Y. Jeong, N. C. Park, H. Yang and Y. P. Park, "Improved air-gap control for SIL-based near- field recording system," IEEE Trans. on Magn. 43, 811-813 (2007).
[CrossRef]

Kim, T. H.

J. G. Kim, T. H. Kim, H. Choi, Y. J. Yoon, Y. Jeong, N. C. Park, H. Yang and Y. P. Park, "Improved air-gap control for SIL-based near- field recording system," IEEE Trans. on Magn. 43, 811-813 (2007).
[CrossRef]

Koshihara, S.

S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara and M. Ohtsu, "Fabrication of a triple tapered probe for nearfield optical spectroscopy in UV region based on selective etching of a multistep index fiber," Opt. Commun. 146, 45-48 (1998).
[CrossRef]

Lanz, M.

D. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ /20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Lee, M.

M. Lee, B. McDaniel, and J. W. P. Hsu, "An impedance based non]contact feedback control system for scanning probe microscopes," Rev. Sci. Instrum. 67, 1468-1471 (1996).
[CrossRef]

J. W. P. Hsu, M. Lee, and B. S. Deaver, "A nonoptical tip?sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system," Rev. Sci. Instrum. 66, 3177-3181 (1995).
[CrossRef]

Lu, Y. Y.

D. P. Tsai and Y. Y. Lu, "Tapping-mode tuning fork force sensing for near-field scanning optical microscopy," Appl. Phys. Lett. 73, 2724-2726 (1998).
[CrossRef]

Marti, O.

J. Barenz, O. Hollricher, and O. Marti, "An easy-to-use nonoptical shear-force distance control for near-field optical microscopes," Rev. Sci. Instrum. 67, 1912-1916 (1996).
[CrossRef]

Masuda, H.

H. Masuda and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science 268, 1466-1468 (1995).
[CrossRef] [PubMed]

Matsuyama, T.

T. Matsuyama and Y. Kawata, "Fabrication of Fluorescent Nanodot Arrays on Metal Films for Application in Near-Field Optical Media," Jpn. J. Appl. Phys. 45, 1438-1441 (2006).
[CrossRef]

T. Matsuyama and Y. Kawata, "Control of Alignment Regularity and Density of Nanodots by Changing Concentration and Molecular Weight of Self-Assembling Diblock Copolyme," Jpn. J. Appl. Phys. 45, L20-L22 (2006).
[CrossRef]

McDaniel, B.

M. Lee, B. McDaniel, and J. W. P. Hsu, "An impedance based non]contact feedback control system for scanning probe microscopes," Rev. Sci. Instrum. 67, 1468-1471 (1996).
[CrossRef]

Mononobe, S.

S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara and M. Ohtsu, "Fabrication of a triple tapered probe for nearfield optical spectroscopy in UV region based on selective etching of a multistep index fiber," Opt. Commun. 146, 45-48 (1998).
[CrossRef]

Nakamura, O.

Y. Kawata, C. Egamia, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, "Nonoptically probing near-field microscopy," Opt. Commun. 161, 6-12 (1999).
[CrossRef]

Nicholls, G.

E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature 237, 510-512 (1972).
[CrossRef] [PubMed]

O’Boyle, M. P.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

Ohtsu, M.

S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara and M. Ohtsu, "Fabrication of a triple tapered probe for nearfield optical spectroscopy in UV region based on selective etching of a multistep index fiber," Opt. Commun. 146, 45-48 (1998).
[CrossRef]

Okamoto, N.

Y. Kawata, C. Egamia, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, "Nonoptically probing near-field microscopy," Opt. Commun. 161, 6-12 (1999).
[CrossRef]

Park, N. C.

J. G. Kim, T. H. Kim, H. Choi, Y. J. Yoon, Y. Jeong, N. C. Park, H. Yang and Y. P. Park, "Improved air-gap control for SIL-based near- field recording system," IEEE Trans. on Magn. 43, 811-813 (2007).
[CrossRef]

Park, Y. P.

J. G. Kim, T. H. Kim, H. Choi, Y. J. Yoon, Y. Jeong, N. C. Park, H. Yang and Y. P. Park, "Improved air-gap control for SIL-based near- field recording system," IEEE Trans. on Magn. 43, 811-813 (2007).
[CrossRef]

Pohl, D.

D. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ /20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

Ribeiro, C. T. M.

A. R. Zanatta, C. T. M. Ribeiro and U. Jahn, "Photon and electron excitation of rare-earth-doped amorphous SiN films," J. Non-Cryst. Solids 338-340, 473-476 (2004).
[CrossRef]

Saiki, T.

S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara and M. Ohtsu, "Fabrication of a triple tapered probe for nearfield optical spectroscopy in UV region based on selective etching of a multistep index fiber," Opt. Commun. 146, 45-48 (1998).
[CrossRef]

Sugihara, O.

Y. Kawata, C. Egamia, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, "Nonoptically probing near-field microscopy," Opt. Commun. 161, 6-12 (1999).
[CrossRef]

Suzuki, T.

S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara and M. Ohtsu, "Fabrication of a triple tapered probe for nearfield optical spectroscopy in UV region based on selective etching of a multistep index fiber," Opt. Commun. 146, 45-48 (1998).
[CrossRef]

Synge, E. H.

E. H. Synge, "A suggested method for extending microscopic resolution into the ultra-microscopic region," Philos. Mag. 6, 356-362 (1928).

Toledo-Crow, R.

R. Toledo-Crow, P. C. Yang, Y. Chen, and M. Vaez-Iravani, "Near]field differential scanning optical microscope with atomic force regulation," Appl. Phys. Lett. 60, 2957-2959 (1992).
[CrossRef]

Trautman, J. K.

E. Betzig and J. K. Trautman, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[CrossRef] [PubMed]

Tsai, D. P.

D. P. Tsai and Y. Y. Lu, "Tapping-mode tuning fork force sensing for near-field scanning optical microscopy," Appl. Phys. Lett. 73, 2724-2726 (1998).
[CrossRef]

Tsuchimori, M.

Y. Kawata, C. Egamia, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, "Nonoptically probing near-field microscopy," Opt. Commun. 161, 6-12 (1999).
[CrossRef]

Vaez-Iravani, M.

R. Toledo-Crow, P. C. Yang, Y. Chen, and M. Vaez-Iravani, "Near]field differential scanning optical microscope with atomic force regulation," Appl. Phys. Lett. 60, 2957-2959 (1992).
[CrossRef]

Watanabe, O.

Y. Kawata, C. Egamia, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, "Nonoptically probing near-field microscopy," Opt. Commun. 161, 6-12 (1999).
[CrossRef]

Weiner, J. S.

E. Betzig, P. L. Finn, and J. S. Weiner, "Combined shear force and near-field scanning optical microscopy," Appl. Phys. Lett. 60, 2484-2486 (1992).
[CrossRef]

Wickramasinghe, H. K.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

Yang, H.

J. G. Kim, T. H. Kim, H. Choi, Y. J. Yoon, Y. Jeong, N. C. Park, H. Yang and Y. P. Park, "Improved air-gap control for SIL-based near- field recording system," IEEE Trans. on Magn. 43, 811-813 (2007).
[CrossRef]

Yang, P. C.

R. Toledo-Crow, P. C. Yang, Y. Chen, and M. Vaez-Iravani, "Near]field differential scanning optical microscope with atomic force regulation," Appl. Phys. Lett. 60, 2957-2959 (1992).
[CrossRef]

Yoon, Y. J.

J. G. Kim, T. H. Kim, H. Choi, Y. J. Yoon, Y. Jeong, N. C. Park, H. Yang and Y. P. Park, "Improved air-gap control for SIL-based near- field recording system," IEEE Trans. on Magn. 43, 811-813 (2007).
[CrossRef]

Yu, H.

H. Yu, T. Iyoda, and T. Ikeda, "Photoinduced Alignment of Nanocylinders by Supramolecular Cooperative Motions," J. Am. Chem. Soc. 128, 11010-11011 (2006).
[CrossRef] [PubMed]

Zanatta, A. R.

A. R. Zanatta, C. T. M. Ribeiro and U. Jahn, "Photon and electron excitation of rare-earth-doped amorphous SiN films," J. Non-Cryst. Solids 338-340, 473-476 (2004).
[CrossRef]

Zenhausern, F.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

Appl. Phys. Lett.

D. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ /20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

E. Betzig and M. Isaacson, "Collection mode near-field scanning optical microscopy," Appl. Phys. Lett. 51, 2088-2090 (1987).
[CrossRef]

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

E. Betzig, P. L. Finn, and J. S. Weiner, "Combined shear force and near-field scanning optical microscopy," Appl. Phys. Lett. 60, 2484-2486 (1992).
[CrossRef]

R. Toledo-Crow, P. C. Yang, Y. Chen, and M. Vaez-Iravani, "Near]field differential scanning optical microscope with atomic force regulation," Appl. Phys. Lett. 60, 2957-2959 (1992).
[CrossRef]

K. Karrai and R. D. Grober, "Piezoelectric tip]sample distance control for near field optical microscopes," Appl. Phys. Lett. 66, 1842-1844 (1995).
[CrossRef]

D. P. Tsai and Y. Y. Lu, "Tapping-mode tuning fork force sensing for near-field scanning optical microscopy," Appl. Phys. Lett. 73, 2724-2726 (1998).
[CrossRef]

Arch. Mikrosk. Anat.

E. Abbe, "Beiträge zur Theorie des Mikroskops und der mikroskopischen.Wahrnehmung," Arch. Mikrosk. Anat. 9,413-468 (1873).
[CrossRef]

IEEE Trans. on Magn.

J. G. Kim, T. H. Kim, H. Choi, Y. J. Yoon, Y. Jeong, N. C. Park, H. Yang and Y. P. Park, "Improved air-gap control for SIL-based near- field recording system," IEEE Trans. on Magn. 43, 811-813 (2007).
[CrossRef]

J. Am. Chem. Soc.

H. Yu, T. Iyoda, and T. Ikeda, "Photoinduced Alignment of Nanocylinders by Supramolecular Cooperative Motions," J. Am. Chem. Soc. 128, 11010-11011 (2006).
[CrossRef] [PubMed]

J. Non-Cryst. Solids

A. R. Zanatta, C. T. M. Ribeiro and U. Jahn, "Photon and electron excitation of rare-earth-doped amorphous SiN films," J. Non-Cryst. Solids 338-340, 473-476 (2004).
[CrossRef]

Jpn. J. Appl. Phys.

T. Matsuyama and Y. Kawata, "Control of Alignment Regularity and Density of Nanodots by Changing Concentration and Molecular Weight of Self-Assembling Diblock Copolyme," Jpn. J. Appl. Phys. 45, L20-L22 (2006).
[CrossRef]

T. Matsuyama and Y. Kawata, "Fabrication of Fluorescent Nanodot Arrays on Metal Films for Application in Near-Field Optical Media," Jpn. J. Appl. Phys. 45, 1438-1441 (2006).
[CrossRef]

Nature

E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature 237, 510-512 (1972).
[CrossRef] [PubMed]

Opt. Commun.

S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara and M. Ohtsu, "Fabrication of a triple tapered probe for nearfield optical spectroscopy in UV region based on selective etching of a multistep index fiber," Opt. Commun. 146, 45-48 (1998).
[CrossRef]

Y. Kawata, C. Egamia, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, "Nonoptically probing near-field microscopy," Opt. Commun. 161, 6-12 (1999).
[CrossRef]

Opt. Lett.

Philos. Mag.

E. H. Synge, "A suggested method for extending microscopic resolution into the ultra-microscopic region," Philos. Mag. 6, 356-362 (1928).

Phys. Rev.

U. Fano, "A theory on cathode luminescence," Phys. Rev. 58, 544-553 (1940).
[CrossRef]

Rev. Mod. Phys.

F. J. Garcıa de Abajo, "Optical excitations in electron microscopy," Rev. Mod. Phys. 82, 209-275 (2010).
[CrossRef]

Rev. Sci. Instrum.

J. W. P. Hsu, M. Lee, and B. S. Deaver, "A nonoptical tip?sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system," Rev. Sci. Instrum. 66, 3177-3181 (1995).
[CrossRef]

J. Barenz, O. Hollricher, and O. Marti, "An easy-to-use nonoptical shear-force distance control for near-field optical microscopes," Rev. Sci. Instrum. 67, 1912-1916 (1996).
[CrossRef]

M. Lee, B. McDaniel, and J. W. P. Hsu, "An impedance based non]contact feedback control system for scanning probe microscopes," Rev. Sci. Instrum. 67, 1468-1471 (1996).
[CrossRef]

Science

E. Betzig and J. K. Trautman, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[CrossRef] [PubMed]

H. Masuda and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science 268, 1466-1468 (1995).
[CrossRef] [PubMed]

Other

D. C. Joy, Monte Carlo Modeling for Electron Microscopy and Microanalysis (Oxford University Press, 1995).

M. Ohtsu and H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum Publishers, New York, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(A) Schematic diagram of EXA microscope. The scanning electron microscope (SEM) is used for excitation and scanning of nanometric light source. The optical microscope is used to detect the light. (B) Layout of silicon nitride membrane. Silicon nitride membrane on a silicon substrate for separation of vacuum from atmospheric pressure.

Fig. 2.
Fig. 2.

(A) EXA microscope image of 100 nm latex spheres. (B) SEM image of the same area as in (A). Each latex sphere of 100 nm diameter was observed clearly and its position in the EXA image was identified with that in the SEM image. The latex spheres were dispersed in a monolayer on SiN surface.

Fig. 3.
Fig. 3.

(A) Observation image of 50nm diameter latex spheres with EXA microscope. (B) Intensity distribution on the solid line indicated in (A). EXA microscope can resolve aligned spheres of 50 nm diameter clearly. The latex spheres were dispersed in a monolayer on SiN surface.

Fig. 4.
Fig. 4.

Dependence of electron scattering on the thickness of SiN and the incident electron acceleration voltage. Thicknesses of SiN membrane were 30, 50 and 75 nm, and acceleration voltages were 1, 5 and 10 kV. Electron beam was focused to a spot diameter of 2 nm on surface of SiN. In the experimental case of acceleration voltage of 10 kV and 50 nm thickness of SiN film, electrons are scattered in the area of 12 nm width.

Metrics