Abstract

In this paper, we demonstrate high optical quantum efficiency (90%) resonant-cavity-enhanced mid-infrared photodetectors fabricated monolithically on a silicon platform. High quality photoconductive polycrystalline PbTe film is thermally evaporated, oxygen-sensitized at room temperature and acts as the infrared absorber. The cavity-enhanced detector operates in the critical coupling regime and shows a peak responsivity of 100 V/W at the resonant wavelength of 3.5 μm, 13.4 times higher compared to blanket PbTe film of the same thickness. Detectivity as high as 0.72 × 109 cmHz1/2W−1 has been measured, comparable with commercial polycrystalline mid-infrared photodetectors. As low temperature processing (< 160 °C) is implemented in the entire fabrication process, our detector is promising for monolithic integration with Si readout integrated circuits.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
    [CrossRef]
  2. M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003).
    [CrossRef]
  3. T. S. Moss, “Lead salt photoconductors,” Proc. IRE 43, 1869–1881 (1955).
  4. D. E. Bode, T. H. Johnson, and B. N. McLean, “Lead selenide detectors for intermediate temperature operation,” Appl. Opt. 4(3), 327–331 (1965).
    [CrossRef]
  5. A. A. Dobrovolsky, Z. M. Dashevsky, V. A. Kasiyan, L. I. Ryabova, and D. R. Khokhlov, “Photoconductivity of oxidized nanostructured PbTe(In) films,” Semicond. Sci. Technol. 24(7), 075010 (2009).
    [CrossRef]
  6. Z. Dashevsky, E. Shufer, V. Kasiyan, E. Flitsiyan, and L. Chernyak, “Influence of oxygen treatment on transport properties of PbTe:In polycrystalline films,” Physica B 405(10), 2380–2384 (2010).
    [CrossRef]
  7. J. Wang, J. Hu, P. Becla, A. Agarwal, and L. C. Kimerling, Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139, are preparing a manuscript to be called “Highly textured, room-temperature-sensitized nanocrystalline PbTe film on silicon for infrared detection.”
  8. M. S. Unlu and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
    [CrossRef]
  9. M. Boberl, T. Fromherz, T. Schwarzl, G. Springholz, and W. Heiss, “IV–VI resonant-cavity enhanced photodetectors for the mid-infrared,” Semicond. Sci. Technol. 19(12), L115–L117 (2004).
    [CrossRef]
  10. M. Arnold, D. Zimin, and H. Zogg, “Resonant-cavity-enhanced photodetectors for the mid-infrared,” Appl. Phys. Lett. 87(14), 141103 (2005).
    [CrossRef]
  11. J. G. A. Wehner, C. A. Musca, R. H. Sewell, J. M. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005).
    [CrossRef]
  12. J. Wang, J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Cavity-enhanced multispectral photodetector using phase-tuned propagation: theory and design,” Opt. Lett. 35(5), 742–744 (2010).
    [CrossRef] [PubMed]
  13. X. C. Sun, J. J. Hu, C. Y. Hong, J. F. Viens, X. M. Duan, R. Das, A. M. Agarwal, and L. C. Kimerling, “Multispectral pixel performance using a one-dimensional photonic crystal design,” Appl. Phys. Lett. 89(22), 223522 (2006).
    [CrossRef]
  14. M. Hammer, K. R. Hiremath, and R. Stoffer, “Analytical approaches to the description of Optical Microresonator Devices,” in Microresonators as Building Blocks for VLSI Photonics, F. Michelotti, A. Driessen, and M. Bertolotti, eds. (AIP Conference Proceedings, Melville, New York, 2004).
  15. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16(12), 1214–1222 (1983).
    [CrossRef]
  16. J. Wang, J. Hu, X. Sun, A. M. Agarwal, L. C. Kimerling, D. R. Lim, and R. A. Synowicki, “Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys. 104(5), 053707 (2008).
    [CrossRef]
  17. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films,” Opt. Mater. 30(10), 1560–1566 (2008).
    [CrossRef]

2010 (2)

Z. Dashevsky, E. Shufer, V. Kasiyan, E. Flitsiyan, and L. Chernyak, “Influence of oxygen treatment on transport properties of PbTe:In polycrystalline films,” Physica B 405(10), 2380–2384 (2010).
[CrossRef]

J. Wang, J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Cavity-enhanced multispectral photodetector using phase-tuned propagation: theory and design,” Opt. Lett. 35(5), 742–744 (2010).
[CrossRef] [PubMed]

2009 (2)

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[CrossRef]

A. A. Dobrovolsky, Z. M. Dashevsky, V. A. Kasiyan, L. I. Ryabova, and D. R. Khokhlov, “Photoconductivity of oxidized nanostructured PbTe(In) films,” Semicond. Sci. Technol. 24(7), 075010 (2009).
[CrossRef]

2008 (2)

J. Wang, J. Hu, X. Sun, A. M. Agarwal, L. C. Kimerling, D. R. Lim, and R. A. Synowicki, “Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys. 104(5), 053707 (2008).
[CrossRef]

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films,” Opt. Mater. 30(10), 1560–1566 (2008).
[CrossRef]

2006 (1)

X. C. Sun, J. J. Hu, C. Y. Hong, J. F. Viens, X. M. Duan, R. Das, A. M. Agarwal, and L. C. Kimerling, “Multispectral pixel performance using a one-dimensional photonic crystal design,” Appl. Phys. Lett. 89(22), 223522 (2006).
[CrossRef]

2005 (2)

M. Arnold, D. Zimin, and H. Zogg, “Resonant-cavity-enhanced photodetectors for the mid-infrared,” Appl. Phys. Lett. 87(14), 141103 (2005).
[CrossRef]

J. G. A. Wehner, C. A. Musca, R. H. Sewell, J. M. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005).
[CrossRef]

2004 (1)

M. Boberl, T. Fromherz, T. Schwarzl, G. Springholz, and W. Heiss, “IV–VI resonant-cavity enhanced photodetectors for the mid-infrared,” Semicond. Sci. Technol. 19(12), L115–L117 (2004).
[CrossRef]

2003 (1)

M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003).
[CrossRef]

1995 (1)

M. S. Unlu and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[CrossRef]

1983 (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16(12), 1214–1222 (1983).
[CrossRef]

1965 (1)

Agarwal, A.

J. Wang, J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Cavity-enhanced multispectral photodetector using phase-tuned propagation: theory and design,” Opt. Lett. 35(5), 742–744 (2010).
[CrossRef] [PubMed]

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films,” Opt. Mater. 30(10), 1560–1566 (2008).
[CrossRef]

Agarwal, A. M.

J. Wang, J. Hu, X. Sun, A. M. Agarwal, L. C. Kimerling, D. R. Lim, and R. A. Synowicki, “Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys. 104(5), 053707 (2008).
[CrossRef]

X. C. Sun, J. J. Hu, C. Y. Hong, J. F. Viens, X. M. Duan, R. Das, A. M. Agarwal, and L. C. Kimerling, “Multispectral pixel performance using a one-dimensional photonic crystal design,” Appl. Phys. Lett. 89(22), 223522 (2006).
[CrossRef]

Almazán, R.

M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003).
[CrossRef]

Antoszewski, J.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[CrossRef]

Arnold, M.

M. Arnold, D. Zimin, and H. Zogg, “Resonant-cavity-enhanced photodetectors for the mid-infrared,” Appl. Phys. Lett. 87(14), 141103 (2005).
[CrossRef]

Boberl, M.

M. Boberl, T. Fromherz, T. Schwarzl, G. Springholz, and W. Heiss, “IV–VI resonant-cavity enhanced photodetectors for the mid-infrared,” Semicond. Sci. Technol. 19(12), L115–L117 (2004).
[CrossRef]

Bode, D. E.

Carlie, N.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films,” Opt. Mater. 30(10), 1560–1566 (2008).
[CrossRef]

Catalán, I.

M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003).
[CrossRef]

Chernyak, L.

Z. Dashevsky, E. Shufer, V. Kasiyan, E. Flitsiyan, and L. Chernyak, “Influence of oxygen treatment on transport properties of PbTe:In polycrystalline films,” Physica B 405(10), 2380–2384 (2010).
[CrossRef]

Das, R.

X. C. Sun, J. J. Hu, C. Y. Hong, J. F. Viens, X. M. Duan, R. Das, A. M. Agarwal, and L. C. Kimerling, “Multispectral pixel performance using a one-dimensional photonic crystal design,” Appl. Phys. Lett. 89(22), 223522 (2006).
[CrossRef]

Dashevsky, Z.

Z. Dashevsky, E. Shufer, V. Kasiyan, E. Flitsiyan, and L. Chernyak, “Influence of oxygen treatment on transport properties of PbTe:In polycrystalline films,” Physica B 405(10), 2380–2384 (2010).
[CrossRef]

Dashevsky, Z. M.

A. A. Dobrovolsky, Z. M. Dashevsky, V. A. Kasiyan, L. I. Ryabova, and D. R. Khokhlov, “Photoconductivity of oxidized nanostructured PbTe(In) films,” Semicond. Sci. Technol. 24(7), 075010 (2009).
[CrossRef]

Dell, J. M.

J. G. A. Wehner, C. A. Musca, R. H. Sewell, J. M. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005).
[CrossRef]

Diezhandino, J.

M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003).
[CrossRef]

Dobrovolsky, A. A.

A. A. Dobrovolsky, Z. M. Dashevsky, V. A. Kasiyan, L. I. Ryabova, and D. R. Khokhlov, “Photoconductivity of oxidized nanostructured PbTe(In) films,” Semicond. Sci. Technol. 24(7), 075010 (2009).
[CrossRef]

Duan, X. M.

X. C. Sun, J. J. Hu, C. Y. Hong, J. F. Viens, X. M. Duan, R. Das, A. M. Agarwal, and L. C. Kimerling, “Multispectral pixel performance using a one-dimensional photonic crystal design,” Appl. Phys. Lett. 89(22), 223522 (2006).
[CrossRef]

Faraone, L.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[CrossRef]

J. G. A. Wehner, C. A. Musca, R. H. Sewell, J. M. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005).
[CrossRef]

Flitsiyan, E.

Z. Dashevsky, E. Shufer, V. Kasiyan, E. Flitsiyan, and L. Chernyak, “Influence of oxygen treatment on transport properties of PbTe:In polycrystalline films,” Physica B 405(10), 2380–2384 (2010).
[CrossRef]

Fromherz, T.

M. Boberl, T. Fromherz, T. Schwarzl, G. Springholz, and W. Heiss, “IV–VI resonant-cavity enhanced photodetectors for the mid-infrared,” Semicond. Sci. Technol. 19(12), L115–L117 (2004).
[CrossRef]

Gómez, L. J.

M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003).
[CrossRef]

Heiss, W.

M. Boberl, T. Fromherz, T. Schwarzl, G. Springholz, and W. Heiss, “IV–VI resonant-cavity enhanced photodetectors for the mid-infrared,” Semicond. Sci. Technol. 19(12), L115–L117 (2004).
[CrossRef]

Hong, C. Y.

X. C. Sun, J. J. Hu, C. Y. Hong, J. F. Viens, X. M. Duan, R. Das, A. M. Agarwal, and L. C. Kimerling, “Multispectral pixel performance using a one-dimensional photonic crystal design,” Appl. Phys. Lett. 89(22), 223522 (2006).
[CrossRef]

Hu, J.

J. Wang, J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Cavity-enhanced multispectral photodetector using phase-tuned propagation: theory and design,” Opt. Lett. 35(5), 742–744 (2010).
[CrossRef] [PubMed]

J. Wang, J. Hu, X. Sun, A. M. Agarwal, L. C. Kimerling, D. R. Lim, and R. A. Synowicki, “Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys. 104(5), 053707 (2008).
[CrossRef]

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films,” Opt. Mater. 30(10), 1560–1566 (2008).
[CrossRef]

Hu, J. J.

X. C. Sun, J. J. Hu, C. Y. Hong, J. F. Viens, X. M. Duan, R. Das, A. M. Agarwal, and L. C. Kimerling, “Multispectral pixel performance using a one-dimensional photonic crystal design,” Appl. Phys. Lett. 89(22), 223522 (2006).
[CrossRef]

Johnson, T. H.

Kasiyan, V.

Z. Dashevsky, E. Shufer, V. Kasiyan, E. Flitsiyan, and L. Chernyak, “Influence of oxygen treatment on transport properties of PbTe:In polycrystalline films,” Physica B 405(10), 2380–2384 (2010).
[CrossRef]

Kasiyan, V. A.

A. A. Dobrovolsky, Z. M. Dashevsky, V. A. Kasiyan, L. I. Ryabova, and D. R. Khokhlov, “Photoconductivity of oxidized nanostructured PbTe(In) films,” Semicond. Sci. Technol. 24(7), 075010 (2009).
[CrossRef]

Khokhlov, D. R.

A. A. Dobrovolsky, Z. M. Dashevsky, V. A. Kasiyan, L. I. Ryabova, and D. R. Khokhlov, “Photoconductivity of oxidized nanostructured PbTe(In) films,” Semicond. Sci. Technol. 24(7), 075010 (2009).
[CrossRef]

Kimerling, L. C.

J. Wang, J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Cavity-enhanced multispectral photodetector using phase-tuned propagation: theory and design,” Opt. Lett. 35(5), 742–744 (2010).
[CrossRef] [PubMed]

J. Wang, J. Hu, X. Sun, A. M. Agarwal, L. C. Kimerling, D. R. Lim, and R. A. Synowicki, “Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys. 104(5), 053707 (2008).
[CrossRef]

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films,” Opt. Mater. 30(10), 1560–1566 (2008).
[CrossRef]

X. C. Sun, J. J. Hu, C. Y. Hong, J. F. Viens, X. M. Duan, R. Das, A. M. Agarwal, and L. C. Kimerling, “Multispectral pixel performance using a one-dimensional photonic crystal design,” Appl. Phys. Lett. 89(22), 223522 (2006).
[CrossRef]

Lim, D. R.

J. Wang, J. Hu, X. Sun, A. M. Agarwal, L. C. Kimerling, D. R. Lim, and R. A. Synowicki, “Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys. 104(5), 053707 (2008).
[CrossRef]

McLean, B. N.

Montojo, M. T.

M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003).
[CrossRef]

Musca, C. A.

J. G. A. Wehner, C. A. Musca, R. H. Sewell, J. M. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005).
[CrossRef]

Petit, L.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films,” Opt. Mater. 30(10), 1560–1566 (2008).
[CrossRef]

Plaza, J.

M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003).
[CrossRef]

Richardson, K.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films,” Opt. Mater. 30(10), 1560–1566 (2008).
[CrossRef]

Rodrigo, M. T.

M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003).
[CrossRef]

Rodríguez, P.

M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003).
[CrossRef]

Rogalski, A.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[CrossRef]

Ryabova, L. I.

A. A. Dobrovolsky, Z. M. Dashevsky, V. A. Kasiyan, L. I. Ryabova, and D. R. Khokhlov, “Photoconductivity of oxidized nanostructured PbTe(In) films,” Semicond. Sci. Technol. 24(7), 075010 (2009).
[CrossRef]

Sánchez, F. J.

M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003).
[CrossRef]

Schwarzl, T.

M. Boberl, T. Fromherz, T. Schwarzl, G. Springholz, and W. Heiss, “IV–VI resonant-cavity enhanced photodetectors for the mid-infrared,” Semicond. Sci. Technol. 19(12), L115–L117 (2004).
[CrossRef]

Sewell, R. H.

J. G. A. Wehner, C. A. Musca, R. H. Sewell, J. M. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005).
[CrossRef]

Shufer, E.

Z. Dashevsky, E. Shufer, V. Kasiyan, E. Flitsiyan, and L. Chernyak, “Influence of oxygen treatment on transport properties of PbTe:In polycrystalline films,” Physica B 405(10), 2380–2384 (2010).
[CrossRef]

Springholz, G.

M. Boberl, T. Fromherz, T. Schwarzl, G. Springholz, and W. Heiss, “IV–VI resonant-cavity enhanced photodetectors for the mid-infrared,” Semicond. Sci. Technol. 19(12), L115–L117 (2004).
[CrossRef]

Strite, S.

M. S. Unlu and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[CrossRef]

Sun, X.

J. Wang, J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Cavity-enhanced multispectral photodetector using phase-tuned propagation: theory and design,” Opt. Lett. 35(5), 742–744 (2010).
[CrossRef] [PubMed]

J. Wang, J. Hu, X. Sun, A. M. Agarwal, L. C. Kimerling, D. R. Lim, and R. A. Synowicki, “Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys. 104(5), 053707 (2008).
[CrossRef]

Sun, X. C.

X. C. Sun, J. J. Hu, C. Y. Hong, J. F. Viens, X. M. Duan, R. Das, A. M. Agarwal, and L. C. Kimerling, “Multispectral pixel performance using a one-dimensional photonic crystal design,” Appl. Phys. Lett. 89(22), 223522 (2006).
[CrossRef]

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16(12), 1214–1222 (1983).
[CrossRef]

Synowicki, R. A.

J. Wang, J. Hu, X. Sun, A. M. Agarwal, L. C. Kimerling, D. R. Lim, and R. A. Synowicki, “Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys. 104(5), 053707 (2008).
[CrossRef]

Tarasov, V.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films,” Opt. Mater. 30(10), 1560–1566 (2008).
[CrossRef]

Torquemada, M. C.

M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003).
[CrossRef]

Unlu, M. S.

M. S. Unlu and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[CrossRef]

Verdú, M.

M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003).
[CrossRef]

Vergara, G.

M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003).
[CrossRef]

Viens, J. F.

X. C. Sun, J. J. Hu, C. Y. Hong, J. F. Viens, X. M. Duan, R. Das, A. M. Agarwal, and L. C. Kimerling, “Multispectral pixel performance using a one-dimensional photonic crystal design,” Appl. Phys. Lett. 89(22), 223522 (2006).
[CrossRef]

Villamayor, V.

M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003).
[CrossRef]

Wang, J.

J. Wang, J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Cavity-enhanced multispectral photodetector using phase-tuned propagation: theory and design,” Opt. Lett. 35(5), 742–744 (2010).
[CrossRef] [PubMed]

J. Wang, J. Hu, X. Sun, A. M. Agarwal, L. C. Kimerling, D. R. Lim, and R. A. Synowicki, “Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys. 104(5), 053707 (2008).
[CrossRef]

Wehner, J. G. A.

J. G. A. Wehner, C. A. Musca, R. H. Sewell, J. M. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005).
[CrossRef]

Zimin, D.

M. Arnold, D. Zimin, and H. Zogg, “Resonant-cavity-enhanced photodetectors for the mid-infrared,” Appl. Phys. Lett. 87(14), 141103 (2005).
[CrossRef]

Zogg, H.

M. Arnold, D. Zimin, and H. Zogg, “Resonant-cavity-enhanced photodetectors for the mid-infrared,” Appl. Phys. Lett. 87(14), 141103 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

X. C. Sun, J. J. Hu, C. Y. Hong, J. F. Viens, X. M. Duan, R. Das, A. M. Agarwal, and L. C. Kimerling, “Multispectral pixel performance using a one-dimensional photonic crystal design,” Appl. Phys. Lett. 89(22), 223522 (2006).
[CrossRef]

M. Arnold, D. Zimin, and H. Zogg, “Resonant-cavity-enhanced photodetectors for the mid-infrared,” Appl. Phys. Lett. 87(14), 141103 (2005).
[CrossRef]

J. G. A. Wehner, C. A. Musca, R. H. Sewell, J. M. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005).
[CrossRef]

Infrared Phys. Technol. (1)

M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003).
[CrossRef]

J. Appl. Phys. (3)

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[CrossRef]

M. S. Unlu and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995).
[CrossRef]

J. Wang, J. Hu, X. Sun, A. M. Agarwal, L. C. Kimerling, D. R. Lim, and R. A. Synowicki, “Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys. 104(5), 053707 (2008).
[CrossRef]

J. Phys. E (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16(12), 1214–1222 (1983).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films,” Opt. Mater. 30(10), 1560–1566 (2008).
[CrossRef]

Physica B (1)

Z. Dashevsky, E. Shufer, V. Kasiyan, E. Flitsiyan, and L. Chernyak, “Influence of oxygen treatment on transport properties of PbTe:In polycrystalline films,” Physica B 405(10), 2380–2384 (2010).
[CrossRef]

Semicond. Sci. Technol. (2)

M. Boberl, T. Fromherz, T. Schwarzl, G. Springholz, and W. Heiss, “IV–VI resonant-cavity enhanced photodetectors for the mid-infrared,” Semicond. Sci. Technol. 19(12), L115–L117 (2004).
[CrossRef]

A. A. Dobrovolsky, Z. M. Dashevsky, V. A. Kasiyan, L. I. Ryabova, and D. R. Khokhlov, “Photoconductivity of oxidized nanostructured PbTe(In) films,” Semicond. Sci. Technol. 24(7), 075010 (2009).
[CrossRef]

Other (3)

M. Hammer, K. R. Hiremath, and R. Stoffer, “Analytical approaches to the description of Optical Microresonator Devices,” in Microresonators as Building Blocks for VLSI Photonics, F. Michelotti, A. Driessen, and M. Bertolotti, eds. (AIP Conference Proceedings, Melville, New York, 2004).

J. Wang, J. Hu, P. Becla, A. Agarwal, and L. C. Kimerling, Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139, are preparing a manuscript to be called “Highly textured, room-temperature-sensitized nanocrystalline PbTe film on silicon for infrared detection.”

T. S. Moss, “Lead salt photoconductors,” Proc. IRE 43, 1869–1881 (1955).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) SEM cross-sectional image of the resonant cavity structure deposited onto a SiO2/Si substrate. (b) Schematic picture of the designed structure. All fifteen layers are clearly seen in (a), demonstrating good film thickness control and uniformity. Sharp interfaces between different layers indicate negligible material inter-diffusion occurs since processing temperatures are low (< 160 °C).

Fig. 2
Fig. 2

QE of RCE detector plotted as a function of Qtm calculated using a modified coupling matrix method; the triangles correspond to TMM simulated QE values of designs with different top mirror (TM) Bragg pair numbers. Near unity QE is attained under critical coupling condition, i.e. Qtm = Qabs.

Fig. 3
Fig. 3

Reflectance spectra of the cavity structure obtained by FTIR measurement (solid line) and TMM simulation (dotted line), showing excellent agreement. The spectra feature a PBG from 2.5 μm to 4.5 μm and a resonant cavity mode at 3.5 μm as designed.

Fig. 4
Fig. 4

Responsivity spectra of the 100 nm PbTe thin film photodetector within the cavity (filled circles) and without cavity (plain film only, open circles) with 0.1 mA bias current. The two inserted pictures on the left show the tested device structures schematically after metal deposition and patterning (green colored regions). The inserted picture on the right shows the electric circuit employed in the photoconductivity measurement. Plain film shows much lower photoresponse (< 10 V/W) in mid-IR range due to very weak light absorption, while PbTe in the cavity shows 13.4 times higher responsivity at the designed resonant wavelength.

Fig. 5
Fig. 5

Detectivity D* as a function of photodetector size with square shape. Theoretically fitted curve is based on Eq. (3) showing the inversely proportional relationship between D* and photodetector size. Solid squares correspond to experimentally measured data.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Q t m = Q a b s and Q b m ( i .e . R b m 1 )
Q a b s = 4 π λ n α s t a c k d r ε c | E 0 | 2 a c t i v e d r | E 0 | 2 4 π λ n α d s t a c k d r ε c | E 0 | 2 | E 0 , a c t i v e | 2
I J = 4 k T Δ f R
D = ( Responsivity / R ) A Δ f I J
Responsivity = I ( 1 + b ) QE τ λ h c e w 2 d 2 p 2 μ p
D = I ( 1 + b ) QE τ λ h c w 4 k T e d 3 p 3 μ p

Metrics