H. Lee and J. Kim, “Retrospective correction of nonuniform illumination on bi-level images,” Opt. Express 15, 23880–23893 (2009).

[CrossRef]

J. Kim, “Restoration of bi-level images via iterative semi-blind Wiener filtering,” Trans. KIEE 57, 1290–1294 (2008).

Y. Shen, E. Y. Lam, and N. Wong, “Binary image restoration by positive semidefinite programming,” Opt. Lett. 32, 121–123 (2007).

[CrossRef]

J. Kim and H. Lee, “Joint nonuniform illumination estimation and deblurring for bar code signals,” Opt. Express 17, 14817–14837 (2007).

[CrossRef]

E. Y. Lam, “Blind bi-level image restoration with iterated quadratic programming,” IEEE Trans. Circ. Syst. Part 2 52, 52–56 (2007).

[CrossRef]

S. Esedoglu, “Blind deconvolution of bar code signals,” Inverse Probl. 20, 121–135 (2004).

[CrossRef]

T. Li and K. Lii, “A joint estimation approach for two-tone image deblurring by blind deconvolution,” IEEE Trans. Image Process. 11, 847–858 (2002).

[CrossRef]

N. F. Law and R. G. Lane, “Blind deconvolution using least squares minimisation,” Opt. Commun. 128, 341–352 (1996).

[CrossRef]

M. D. Sacchi, D. R. Velis, and A. H. Comingues, “Minimum entropy deconvolution with frequency-domain constraints,” Geophysics 59, 938–945 (1994).

[CrossRef]

D. Kundur and D. Hatzinakos, “Blind image deconvolution,” IEEE Trans. Image Process. 2, 223–235 (1993).

N. Miura, N. Baba, S. Isobe, M. Noguchi, and Y. Norimoto, “Binary star reconstruction with use of the blind deconvolution method,” J. Mod. Opt. 39, 1137–1146 (1992).

[CrossRef]

T. J. Holmes, “Blind deconvolution of quantum-limited incorehent imagery:maximum-likelihood approach,” J. Opt. Soc. Am. A 9, 1052–1061 (1992).

[CrossRef]
[PubMed]

H. Wu, “Minimum entropy deconvolution for restoration of blurred two-tone images,” Electronics Letters 26, 1183–1184 (1990).

[CrossRef]

N. Miura, N. Baba, S. Isobe, M. Noguchi, and Y. Norimoto, “Binary star reconstruction with use of the blind deconvolution method,” J. Mod. Opt. 39, 1137–1146 (1992).

[CrossRef]

J. A. Cadzow, “Blind deconvolution via cumulant extrema,” IEEE Signal Processing Magazine., 24–41 (1996).

[CrossRef]

T. Chan and C. K. Wong, “Total variation blind deconvolution,” IEEE Trans. Image Process. 7, 370–375 (1998).

[CrossRef]

E. K. P. Chong and S. H. Żak, An introduction to optimization, 3rd ed. (Wiley-Interscience, New Jersey, 2008).

M. D. Sacchi, D. R. Velis, and A. H. Comingues, “Minimum entropy deconvolution with frequency-domain constraints,” Geophysics 59, 938–945 (1994).

[CrossRef]

D. Donoho, “On minimum entropy deconvolution,” Applied Time Series Analysis II, D. F. Findley ed., (Academic, New York, 1991).

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB, (Prentice Hall, New York, 2002).

S. Esedoglu, “Blind deconvolution of bar code signals,” Inverse Probl. 20, 121–135 (2004).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C++, 2nd ed. (Cambridge, 2005).

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB, (Prentice Hall, New York, 2002).

D. Kundur and D. Hatzinakos, “A novel blind deconvolution scheme for image restoration using recursive filtering,” IEEE Trans. Signal Process. 45, 375–390 (1998).

[CrossRef]

D. Kundur and D. Hatzinakos, “Blind image deconvolution,” IEEE Trans. Image Process. 2, 223–235 (1993).

N. Miura, N. Baba, S. Isobe, M. Noguchi, and Y. Norimoto, “Binary star reconstruction with use of the blind deconvolution method,” J. Mod. Opt. 39, 1137–1146 (1992).

[CrossRef]

D. Kundur and D. Hatzinakos, “A novel blind deconvolution scheme for image restoration using recursive filtering,” IEEE Trans. Signal Process. 45, 375–390 (1998).

[CrossRef]

D. Kundur and D. Hatzinakos, “Blind image deconvolution,” IEEE Trans. Image Process. 2, 223–235 (1993).

N. F. Law and R. G. Lane, “Blind deconvolution using least squares minimisation,” Opt. Commun. 128, 341–352 (1996).

[CrossRef]

N. F. Law and R. G. Lane, “Blind deconvolution using least squares minimisation,” Opt. Commun. 128, 341–352 (1996).

[CrossRef]

T. Li and K. Lii, “A joint estimation approach for two-tone image deblurring by blind deconvolution,” IEEE Trans. Image Process. 11, 847–858 (2002).

[CrossRef]

T. Li and K. Lii, “A joint estimation approach for two-tone image deblurring by blind deconvolution,” IEEE Trans. Image Process. 11, 847–858 (2002).

[CrossRef]

T. Mathworks, Optimization toolbox user’s guide (Mathworks Inc., 2003).

N. Miura, N. Baba, S. Isobe, M. Noguchi, and Y. Norimoto, “Binary star reconstruction with use of the blind deconvolution method,” J. Mod. Opt. 39, 1137–1146 (1992).

[CrossRef]

N. Miura, N. Baba, S. Isobe, M. Noguchi, and Y. Norimoto, “Binary star reconstruction with use of the blind deconvolution method,” J. Mod. Opt. 39, 1137–1146 (1992).

[CrossRef]

N. Miura, N. Baba, S. Isobe, M. Noguchi, and Y. Norimoto, “Binary star reconstruction with use of the blind deconvolution method,” J. Mod. Opt. 39, 1137–1146 (1992).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C++, 2nd ed. (Cambridge, 2005).

M. D. Sacchi, D. R. Velis, and A. H. Comingues, “Minimum entropy deconvolution with frequency-domain constraints,” Geophysics 59, 938–945 (1994).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C++, 2nd ed. (Cambridge, 2005).

H. L. Van Trees, Detection, estimation, and modulation theory, Part 1 (Wiley, 1968).

M. D. Sacchi, D. R. Velis, and A. H. Comingues, “Minimum entropy deconvolution with frequency-domain constraints,” Geophysics 59, 938–945 (1994).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C++, 2nd ed. (Cambridge, 2005).

T. Chan and C. K. Wong, “Total variation blind deconvolution,” IEEE Trans. Image Process. 7, 370–375 (1998).

[CrossRef]

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB, (Prentice Hall, New York, 2002).

H. Wu, “Minimum entropy deconvolution for restoration of blurred two-tone images,” Electronics Letters 26, 1183–1184 (1990).

[CrossRef]

E. K. P. Chong and S. H. Żak, An introduction to optimization, 3rd ed. (Wiley-Interscience, New Jersey, 2008).

H. Wu, “Minimum entropy deconvolution for restoration of blurred two-tone images,” Electronics Letters 26, 1183–1184 (1990).

[CrossRef]

M. D. Sacchi, D. R. Velis, and A. H. Comingues, “Minimum entropy deconvolution with frequency-domain constraints,” Geophysics 59, 938–945 (1994).

[CrossRef]

E. Y. Lam, “Blind bi-level image restoration with iterated quadratic programming,” IEEE Trans. Circ. Syst. Part 2 52, 52–56 (2007).

[CrossRef]

T. Li and K. Lii, “A joint estimation approach for two-tone image deblurring by blind deconvolution,” IEEE Trans. Image Process. 11, 847–858 (2002).

[CrossRef]

D. Kundur and D. Hatzinakos, “Blind image deconvolution,” IEEE Trans. Image Process. 2, 223–235 (1993).

T. Chan and C. K. Wong, “Total variation blind deconvolution,” IEEE Trans. Image Process. 7, 370–375 (1998).

[CrossRef]

D. Kundur and D. Hatzinakos, “A novel blind deconvolution scheme for image restoration using recursive filtering,” IEEE Trans. Signal Process. 45, 375–390 (1998).

[CrossRef]

S. Esedoglu, “Blind deconvolution of bar code signals,” Inverse Probl. 20, 121–135 (2004).

[CrossRef]

N. Miura, N. Baba, S. Isobe, M. Noguchi, and Y. Norimoto, “Binary star reconstruction with use of the blind deconvolution method,” J. Mod. Opt. 39, 1137–1146 (1992).

[CrossRef]

N. F. Law and R. G. Lane, “Blind deconvolution using least squares minimisation,” Opt. Commun. 128, 341–352 (1996).

[CrossRef]

J. Kim, “Restoration of bi-level images via iterative semi-blind Wiener filtering,” Trans. KIEE 57, 1290–1294 (2008).

H. L. Van Trees, Detection, estimation, and modulation theory, Part 1 (Wiley, 1968).

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB, (Prentice Hall, New York, 2002).

T. Mathworks, Optimization toolbox user’s guide (Mathworks Inc., 2003).

D. Donoho, “On minimum entropy deconvolution,” Applied Time Series Analysis II, D. F. Findley ed., (Academic, New York, 1991).

J. A. Cadzow, “Blind deconvolution via cumulant extrema,” IEEE Signal Processing Magazine., 24–41 (1996).

[CrossRef]

P. Campisi and K. Egiazarian Eds., Blind image deconvolution: Theory and applications, (CRC, New York, 2007).

[CrossRef]

E. K. P. Chong and S. H. Żak, An introduction to optimization, 3rd ed. (Wiley-Interscience, New Jersey, 2008).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical recipes in C++, 2nd ed. (Cambridge, 2005).