Abstract

We report on a novel type of Bi-doped crystal that exhibits ultrabroadband photoluminescence in the near infrared (NIR). Emission centers can be generated and degenerated reversibly by annealing the material in CO atmosphere and air, respectively, indicating that emission is related to the presence of Bi-species in low valence states. Correlating static and dynamic excitation and emission data with the size and charge of available lattice sites suggests that two types of Bi0-species, each located on one of the two available Ba2+ lattice sites, are responsible for NIR photoemission. This is further confirmed by the absence of NIR emission in polycrystalline Ca2P2O7:Bi and Sr2P2O7:Bi. Excitation is assigned to transitions between the doubly degenerated ground state 4S3/2 and the degenerated excited levels 2D3/2, 2D5/2 and 2P1/2, respectively. NIR emission is attributed to 2D3/24S3/2. The NIR emission center can coexist with Bi2+ species. Then, also Bi2+ is accommodated on one of the two Ba2+-sites. Energy transfer between Bi2+ ions occurs within a critical distance of 25.9 Å.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
    [CrossRef]
  2. S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77(6), 818–820 (2000).
    [CrossRef]
  3. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
    [CrossRef]
  4. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
    [CrossRef] [PubMed]
  5. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
    [CrossRef] [PubMed]
  6. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
    [CrossRef]
  7. E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
    [CrossRef]
  8. I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
    [CrossRef]
  9. R. S. Quimby, R. L. Shubochkin, and T. F. Morse, “High quantum efficiency of near-infrared emission in bismuth doped AlGeP-silica fiber,” Opt. Lett. 34(20), 3181–3183 (2009).
    [CrossRef] [PubMed]
  10. M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
    [CrossRef]
  11. A. G. Okhrimchuk, L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zagorodnev, and K. N. Boldyrev, “Near-infrared luminescence of RbPb2Cl5:Bi crystals,” Opt. Lett. 33(19), 2182–2184 (2008).
    [CrossRef] [PubMed]
  12. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33(13), 1488–1490 (2008).
    [CrossRef] [PubMed]
  13. J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express 17(7), 5163–5169 (2009).
    [CrossRef] [PubMed]
  14. L. Su, J. Yu, P. Zhou, H. Li, L. Zheng, Y. Yang, F. Wu, H. Xia, and J. Xu, “Broadband near-infrared luminescence in γ-irradiated Bi-doped α-BaB(2)O(4) single crystals,” Opt. Lett. 34(16), 2504–2506 (2009).
    [CrossRef] [PubMed]
  15. L. Su, P. Zhou, J. Yu, H. Li, L. Zheng, F. Wu, Y. Yang, Q. Yang, and J. Xu, “Spectroscopic properties and near-infrared broadband luminescence of Bi-doped SrB4O7 glasses and crystalline materials,” Opt. Express 17(16), 13554–13560 (2009).
    [CrossRef] [PubMed]
  16. H. T. Sun, Y. Miwa, F. Shimaoka, M. Fujii, A. Hosokawa, M. Mizuhata, S. Hayashi, and S. Deki, “Superbroadband near-IR nano-optical source based on bismuth-doped high-silica nanocrystalline zeolites,” Opt. Lett. 34(8), 1219–1221 (2009).
    [CrossRef] [PubMed]
  17. S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007).
    [CrossRef]
  18. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
    [CrossRef] [PubMed]
  19. T. Ohkura, Y. Fujimoto, M. Nakatsuka, and S. Young-Seok, “Local structures of bismuth ion in bismuth-doped silica glasses analyzed using Bi LIII X-Ray absorption fine structure,” J. Am. Ceram. Soc. 90(11), 3596–3600 (2007).
    [CrossRef]
  20. Y. Fujimoto, “Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass,” J. Am. Ceram. Soc. 93(2), 581–589 (2010).
    [CrossRef]
  21. I. Razdobreev, V. Y. Ivanov, L. Bigot, M. Godlewski, and E. F. Kustov, “Optically detected magnetic resonance in bismuth-doped silica glass,” Opt. Lett. 34(17), 2691–2693 (2009).
    [CrossRef] [PubMed]
  22. J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloy. Comp. 463(1-2), L5–L8 (2008).
    [CrossRef]
  23. N. Kumada, N. Takahashi, N. Kinomura, and A. W. Sleight, “Preparation and crystal structure of a new lithium bismuth oxide: LiBiO3,” J. Solid State Chem. 126(1), 121–126 (1996).
    [CrossRef]
  24. G. Dong, X. Xiao, J. Ren, J. Ruan, X. Liu, J. Qiu, C. Lin, H. Tao, and X. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
    [CrossRef]
  25. B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007).
    [CrossRef]
  26. J. Duffy, “Redox equilibria in glass,” J. Non-Cryst. Solids 196, 45–50 (1996).
    [CrossRef]
  27. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express 13(5), 1635–1642 (2005).
    [CrossRef] [PubMed]
  28. J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
    [CrossRef]
  29. S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
    [CrossRef]
  30. M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
    [CrossRef]
  31. B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B 95(4), 801–805 (2009).
    [CrossRef]
  32. M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).
    [CrossRef]
  33. M. Y. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses,” Opt. Lett. 33(18), 2131–2133 (2008).
    [CrossRef] [PubMed]
  34. J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. 43(17), 2230–2234 (2004).
    [CrossRef]
  35. M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009).
    [CrossRef]
  36. M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009).
    [CrossRef]
  37. http://www.ill.eu/sites/fullprof/ (2009).
  38. A. ElBelghitti, A. Elmarzouki, A. Boukhari, and E. M. Holt, “σ-dibarium pyrophosphate,” Acta Crystallogr. C 51(8), 1478–1480 (1995).
    [CrossRef]
  39. M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett. 34(19), 2885–2887 (2009).
    [CrossRef] [PubMed]
  40. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
    [CrossRef] [PubMed]
  41. G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131–144 (1969).
  42. G. Blasse, “Energy transfer between inequivalent Eu2+ ions,” J. Solid State Chem. 62(2), 207–211 (1986).
    [CrossRef]
  43. M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4: Eu2+ phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
    [CrossRef]
  44. J. Slater, Quantum theory of molecules and solids, Symmetry and energy bands in crystals, (McGraw-Hill Inc. 1965) Vol. 2 pg. 55.
  45. R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [CrossRef]
  46. S. Boudin, A. Grandin, M. Borel, A. Leclaire, and B. Raveau, “Redetermination of the β-Ca2P207 structure,” Acta Crystallogr. C 49(12), 2062 (1993).
    [CrossRef]
  47. J. Barbier and J. Echard, “A new refinement of α-Sr2P2O7,” Acta Crystallogr. C 54(12), IUC9800070 (1998).
    [CrossRef]
  48. Y. Qiu and Y. Shen, “Investigation on the spectral characteristics of bismuth doped silica fibers,” Opt. Mater. 31(2), 223–228 (2008).
    [CrossRef]
  49. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
    [CrossRef] [PubMed]
  50. V. Dvoirin, V. Mashinsky, O. Medvedkov, A. Umnikov, A. Gur’yanov, and E. Dianov, “Bismuth-doped telecommunication fibres for lasers and amplifiers in the 1400-1500-nm region,” Quantum Electron. 39(6), 583–584 (2009).
    [CrossRef]
  51. V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
    [CrossRef]
  52. Z. Xu-hui and L. Jian-bang, “A hollow cathode bismuth ion laser,” Appl. Phys. B 29(4), 291–292 (1982).
    [CrossRef]
  53. M. Chou and T. Cool, “Laser operation by dissociation of metal complexes: New transitions in arsenic, bismuth, gallium, germanium, mercury, indium, lead, antimony, and thallium,” J. Appl. Phys. 47, 1055–1061 (1976).
    [CrossRef]
  54. S. Drosch and G. Gerber, “Optically pumped cw molecular bismuth laser,” J. Chem. Phys. 77(1), 123–130 (1982).
    [CrossRef]
  55. E. Goovaerts, S. Nistor, and D. Schoemaker, “Electron-spin-resonance and optical study of the Bi0(6p3) center in KCl,” Phys. Rev. B 42(7), 3810–3817 (1990).
    [CrossRef]

2010

Y. Fujimoto, “Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass,” J. Am. Ceram. Soc. 93(2), 581–589 (2010).
[CrossRef]

2009

I. Razdobreev, V. Y. Ivanov, L. Bigot, M. Godlewski, and E. F. Kustov, “Optically detected magnetic resonance in bismuth-doped silica glass,” Opt. Lett. 34(17), 2691–2693 (2009).
[CrossRef] [PubMed]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[CrossRef] [PubMed]

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B 95(4), 801–805 (2009).
[CrossRef]

M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).
[CrossRef]

R. S. Quimby, R. L. Shubochkin, and T. F. Morse, “High quantum efficiency of near-infrared emission in bismuth doped AlGeP-silica fiber,” Opt. Lett. 34(20), 3181–3183 (2009).
[CrossRef] [PubMed]

J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express 17(7), 5163–5169 (2009).
[CrossRef] [PubMed]

L. Su, J. Yu, P. Zhou, H. Li, L. Zheng, Y. Yang, F. Wu, H. Xia, and J. Xu, “Broadband near-infrared luminescence in γ-irradiated Bi-doped α-BaB(2)O(4) single crystals,” Opt. Lett. 34(16), 2504–2506 (2009).
[CrossRef] [PubMed]

L. Su, P. Zhou, J. Yu, H. Li, L. Zheng, F. Wu, Y. Yang, Q. Yang, and J. Xu, “Spectroscopic properties and near-infrared broadband luminescence of Bi-doped SrB4O7 glasses and crystalline materials,” Opt. Express 17(16), 13554–13560 (2009).
[CrossRef] [PubMed]

H. T. Sun, Y. Miwa, F. Shimaoka, M. Fujii, A. Hosokawa, M. Mizuhata, S. Hayashi, and S. Deki, “Superbroadband near-IR nano-optical source based on bismuth-doped high-silica nanocrystalline zeolites,” Opt. Lett. 34(8), 1219–1221 (2009).
[CrossRef] [PubMed]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett. 34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

V. Dvoirin, V. Mashinsky, O. Medvedkov, A. Umnikov, A. Gur’yanov, and E. Dianov, “Bismuth-doped telecommunication fibres for lasers and amplifiers in the 1400-1500-nm region,” Quantum Electron. 39(6), 583–584 (2009).
[CrossRef]

2008

V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

Y. Qiu and Y. Shen, “Investigation on the spectral characteristics of bismuth doped silica fibers,” Opt. Mater. 31(2), 223–228 (2008).
[CrossRef]

A. G. Okhrimchuk, L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zagorodnev, and K. N. Boldyrev, “Near-infrared luminescence of RbPb2Cl5:Bi crystals,” Opt. Lett. 33(19), 2182–2184 (2008).
[CrossRef] [PubMed]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33(13), 1488–1490 (2008).
[CrossRef] [PubMed]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

M. Y. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses,” Opt. Lett. 33(18), 2131–2133 (2008).
[CrossRef] [PubMed]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

G. Dong, X. Xiao, J. Ren, J. Ruan, X. Liu, J. Qiu, C. Lin, H. Tao, and X. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloy. Comp. 463(1-2), L5–L8 (2008).
[CrossRef]

2007

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007).
[CrossRef]

T. Ohkura, Y. Fujimoto, M. Nakatsuka, and S. Young-Seok, “Local structures of bismuth ion in bismuth-doped silica glasses analyzed using Bi LIII X-Ray absorption fine structure,” J. Am. Ceram. Soc. 90(11), 3596–3600 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[CrossRef]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007).
[CrossRef]

2005

2004

J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. 43(17), 2230–2234 (2004).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

2003

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4: Eu2+ phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[CrossRef]

2001

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

2000

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77(6), 818–820 (2000).
[CrossRef]

1998

J. Barbier and J. Echard, “A new refinement of α-Sr2P2O7,” Acta Crystallogr. C 54(12), IUC9800070 (1998).
[CrossRef]

1996

J. Duffy, “Redox equilibria in glass,” J. Non-Cryst. Solids 196, 45–50 (1996).
[CrossRef]

N. Kumada, N. Takahashi, N. Kinomura, and A. W. Sleight, “Preparation and crystal structure of a new lithium bismuth oxide: LiBiO3,” J. Solid State Chem. 126(1), 121–126 (1996).
[CrossRef]

1995

A. ElBelghitti, A. Elmarzouki, A. Boukhari, and E. M. Holt, “σ-dibarium pyrophosphate,” Acta Crystallogr. C 51(8), 1478–1480 (1995).
[CrossRef]

1993

S. Boudin, A. Grandin, M. Borel, A. Leclaire, and B. Raveau, “Redetermination of the β-Ca2P207 structure,” Acta Crystallogr. C 49(12), 2062 (1993).
[CrossRef]

1990

E. Goovaerts, S. Nistor, and D. Schoemaker, “Electron-spin-resonance and optical study of the Bi0(6p3) center in KCl,” Phys. Rev. B 42(7), 3810–3817 (1990).
[CrossRef]

1986

G. Blasse, “Energy transfer between inequivalent Eu2+ ions,” J. Solid State Chem. 62(2), 207–211 (1986).
[CrossRef]

1982

S. Drosch and G. Gerber, “Optically pumped cw molecular bismuth laser,” J. Chem. Phys. 77(1), 123–130 (1982).
[CrossRef]

Z. Xu-hui and L. Jian-bang, “A hollow cathode bismuth ion laser,” Appl. Phys. B 29(4), 291–292 (1982).
[CrossRef]

1976

M. Chou and T. Cool, “Laser operation by dissociation of metal complexes: New transitions in arsenic, bismuth, gallium, germanium, mercury, indium, lead, antimony, and thallium,” J. Appl. Phys. 47, 1055–1061 (1976).
[CrossRef]

R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[CrossRef]

1969

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131–144 (1969).

Akada, T.

Alfano, R. R.

Arai, Y.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[CrossRef]

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007).
[CrossRef]

Barbier, J.

J. Barbier and J. Echard, “A new refinement of α-Sr2P2O7,” Acta Crystallogr. C 54(12), IUC9800070 (1998).
[CrossRef]

Bigot, L.

I. Razdobreev, V. Y. Ivanov, L. Bigot, M. Godlewski, and E. F. Kustov, “Optically detected magnetic resonance in bismuth-doped silica glass,” Opt. Lett. 34(17), 2691–2693 (2009).
[CrossRef] [PubMed]

V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[CrossRef]

Blasse, G.

G. Blasse, “Energy transfer between inequivalent Eu2+ ions,” J. Solid State Chem. 62(2), 207–211 (1986).
[CrossRef]

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131–144 (1969).

Boldyrev, K. N.

Borel, M.

S. Boudin, A. Grandin, M. Borel, A. Leclaire, and B. Raveau, “Redetermination of the β-Ca2P207 structure,” Acta Crystallogr. C 49(12), 2062 (1993).
[CrossRef]

Boudin, S.

S. Boudin, A. Grandin, M. Borel, A. Leclaire, and B. Raveau, “Redetermination of the β-Ca2P207 structure,” Acta Crystallogr. C 49(12), 2062 (1993).
[CrossRef]

Boukhari, A.

A. ElBelghitti, A. Elmarzouki, A. Boukhari, and E. M. Holt, “σ-dibarium pyrophosphate,” Acta Crystallogr. C 51(8), 1478–1480 (1995).
[CrossRef]

Bouwmans, G.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[CrossRef]

Butvina, L. N.

Bykov, A. B.

Chen, D.

J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express 17(7), 5163–5169 (2009).
[CrossRef] [PubMed]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloy. Comp. 463(1-2), L5–L8 (2008).
[CrossRef]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Chen, D. P.

Chou, M.

M. Chou and T. Cool, “Laser operation by dissociation of metal complexes: New transitions in arsenic, bismuth, gallium, germanium, mercury, indium, lead, antimony, and thallium,” J. Appl. Phys. 47, 1055–1061 (1976).
[CrossRef]

Cool, T.

M. Chou and T. Cool, “Laser operation by dissociation of metal complexes: New transitions in arsenic, bismuth, gallium, germanium, mercury, indium, lead, antimony, and thallium,” J. Appl. Phys. 47, 1055–1061 (1976).
[CrossRef]

Da, N.

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

Deki, S.

Denker, B.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B 95(4), 801–805 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007).
[CrossRef]

Dianov, E.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B 95(4), 801–805 (2009).
[CrossRef]

V. Dvoirin, V. Mashinsky, O. Medvedkov, A. Umnikov, A. Gur’yanov, and E. Dianov, “Bismuth-doped telecommunication fibres for lasers and amplifiers in the 1400-1500-nm region,” Quantum Electron. 39(6), 583–584 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007).
[CrossRef]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

Dianov, E. M.

Dong, G.

G. Dong, X. Xiao, J. Ren, J. Ruan, X. Liu, J. Qiu, C. Lin, H. Tao, and X. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Douay, M.

V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[CrossRef]

Drosch, S.

S. Drosch and G. Gerber, “Optically pumped cw molecular bismuth laser,” J. Chem. Phys. 77(1), 123–130 (1982).
[CrossRef]

Duffy, J.

J. Duffy, “Redox equilibria in glass,” J. Non-Cryst. Solids 196, 45–50 (1996).
[CrossRef]

Dvoirin, V.

V. Dvoirin, V. Mashinsky, O. Medvedkov, A. Umnikov, A. Gur’yanov, and E. Dianov, “Bismuth-doped telecommunication fibres for lasers and amplifiers in the 1400-1500-nm region,” Quantum Electron. 39(6), 583–584 (2009).
[CrossRef]

Dvoyrin, V.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

Echard, J.

J. Barbier and J. Echard, “A new refinement of α-Sr2P2O7,” Acta Crystallogr. C 54(12), IUC9800070 (1998).
[CrossRef]

ElBelghitti, A.

A. ElBelghitti, A. Elmarzouki, A. Boukhari, and E. M. Holt, “σ-dibarium pyrophosphate,” Acta Crystallogr. C 51(8), 1478–1480 (1995).
[CrossRef]

Elmarzouki, A.

A. ElBelghitti, A. Elmarzouki, A. Boukhari, and E. M. Holt, “σ-dibarium pyrophosphate,” Acta Crystallogr. C 51(8), 1478–1480 (1995).
[CrossRef]

Favre, A.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[CrossRef]

Feng, X.

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77(6), 818–820 (2000).
[CrossRef]

Fujii, M.

Fujimoto, Y.

Y. Fujimoto, “Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass,” J. Am. Ceram. Soc. 93(2), 581–589 (2010).
[CrossRef]

T. Ohkura, Y. Fujimoto, M. Nakatsuka, and S. Young-Seok, “Local structures of bismuth ion in bismuth-doped silica glasses analyzed using Bi LIII X-Ray absorption fine structure,” J. Am. Ceram. Soc. 90(11), 3596–3600 (2007).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

Galagan, B.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B 95(4), 801–805 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007).
[CrossRef]

Gerber, G.

S. Drosch and G. Gerber, “Optically pumped cw molecular bismuth laser,” J. Chem. Phys. 77(1), 123–130 (1982).
[CrossRef]

Godlewski, M.

Goovaerts, E.

E. Goovaerts, S. Nistor, and D. Schoemaker, “Electron-spin-resonance and optical study of the Bi0(6p3) center in KCl,” Phys. Rev. B 42(7), 3810–3817 (1990).
[CrossRef]

Grandin, A.

S. Boudin, A. Grandin, M. Borel, A. Leclaire, and B. Raveau, “Redetermination of the β-Ca2P207 structure,” Acta Crystallogr. C 49(12), 2062 (1993).
[CrossRef]

Gur’yanov, A.

V. Dvoirin, V. Mashinsky, O. Medvedkov, A. Umnikov, A. Gur’yanov, and E. Dianov, “Bismuth-doped telecommunication fibres for lasers and amplifiers in the 1400-1500-nm region,” Quantum Electron. 39(6), 583–584 (2009).
[CrossRef]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

Hao, J.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

Hayashi, S.

Hewak, D. W.

Hirao, K.

J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. 43(17), 2230–2234 (2004).
[CrossRef]

Holt, E. M.

A. ElBelghitti, A. Elmarzouki, A. Boukhari, and E. M. Holt, “σ-dibarium pyrophosphate,” Acta Crystallogr. C 51(8), 1478–1480 (1995).
[CrossRef]

Hong, G.

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4: Eu2+ phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[CrossRef]

Hosokawa, A.

Hu, X.

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloy. Comp. 463(1-2), L5–L8 (2008).
[CrossRef]

Hughes, M.

M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).
[CrossRef]

Hughes, M. A.

Ivanov, V. Y.

Jian-bang, L.

Z. Xu-hui and L. Jian-bang, “A hollow cathode bismuth ion laser,” Appl. Phys. B 29(4), 291–292 (1982).
[CrossRef]

Jiang, N.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. 43(17), 2230–2234 (2004).
[CrossRef]

Jiang, X.

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloy. Comp. 463(1-2), L5–L8 (2008).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
[CrossRef]

J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. 43(17), 2230–2234 (2004).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Jiang, X. W.

Khonthon, S.

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[CrossRef]

Kinomura, N.

N. Kumada, N. Takahashi, N. Kinomura, and A. W. Sleight, “Preparation and crystal structure of a new lithium bismuth oxide: LiBiO3,” J. Solid State Chem. 126(1), 121–126 (1996).
[CrossRef]

Krolikowski, S.

Kumada, N.

N. Kumada, N. Takahashi, N. Kinomura, and A. W. Sleight, “Preparation and crystal structure of a new lithium bismuth oxide: LiBiO3,” J. Solid State Chem. 126(1), 121–126 (1996).
[CrossRef]

Kustov, E. F.

Lakshminarayana, G.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

Leclaire, A.

S. Boudin, A. Grandin, M. Borel, A. Leclaire, and B. Raveau, “Redetermination of the β-Ca2P207 structure,” Acta Crystallogr. C 49(12), 2062 (1993).
[CrossRef]

Lei, W.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

Lerouge, A.

V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

Li, H.

Lichkova, N. V.

Lin, C.

G. Dong, X. Xiao, J. Ren, J. Ruan, X. Liu, J. Qiu, C. Lin, H. Tao, and X. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Liu, X.

G. Dong, X. Xiao, J. Ren, J. Ruan, X. Liu, J. Qiu, C. Lin, H. Tao, and X. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Mashinsky, V.

V. Dvoirin, V. Mashinsky, O. Medvedkov, A. Umnikov, A. Gur’yanov, and E. Dianov, “Bismuth-doped telecommunication fibres for lasers and amplifiers in the 1400-1500-nm region,” Quantum Electron. 39(6), 583–584 (2009).
[CrossRef]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

Medvedkov, O.

V. Dvoirin, V. Mashinsky, O. Medvedkov, A. Umnikov, A. Gur’yanov, and E. Dianov, “Bismuth-doped telecommunication fibres for lasers and amplifiers in the 1400-1500-nm region,” Quantum Electron. 39(6), 583–584 (2009).
[CrossRef]

Meng, X.

Meng, X. G.

Miwa, Y.

Mizuhata, M.

Morimoto, S.

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[CrossRef]

Morse, T. F.

Nakatsuka, M.

T. Ohkura, Y. Fujimoto, M. Nakatsuka, and S. Young-Seok, “Local structures of bismuth ion in bismuth-doped silica glasses analyzed using Bi LIII X-Ray absorption fine structure,” J. Am. Ceram. Soc. 90(11), 3596–3600 (2007).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

Nistor, S.

E. Goovaerts, S. Nistor, and D. Schoemaker, “Electron-spin-resonance and optical study of the Bi0(6p3) center in KCl,” Phys. Rev. B 42(7), 3810–3817 (1990).
[CrossRef]

Ohishi, Y.

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[CrossRef]

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007).
[CrossRef]

Ohkura, T.

T. Ohkura, Y. Fujimoto, M. Nakatsuka, and S. Young-Seok, “Local structures of bismuth ion in bismuth-doped silica glasses analyzed using Bi LIII X-Ray absorption fine structure,” J. Am. Ceram. Soc. 90(11), 3596–3600 (2007).
[CrossRef]

Okhrimchuk, A. G.

Osiko, V.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B 95(4), 801–805 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007).
[CrossRef]

Pei, Z.

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4: Eu2+ phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[CrossRef]

Peng, M.

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett. 34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009).
[CrossRef]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[CrossRef] [PubMed]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4: Eu2+ phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[CrossRef]

Peng, M. Y.

Petricevic, V.

Plotnichenko, V. G.

Pureur, V.

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[CrossRef]

Qiu, J.

J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express 17(7), 5163–5169 (2009).
[CrossRef] [PubMed]

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009).
[CrossRef]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloy. Comp. 463(1-2), L5–L8 (2008).
[CrossRef]

G. Dong, X. Xiao, J. Ren, J. Ruan, X. Liu, J. Qiu, C. Lin, H. Tao, and X. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. 43(17), 2230–2234 (2004).
[CrossRef]

Qiu, J. R.

Qiu, Y.

Y. Qiu and Y. Shen, “Investigation on the spectral characteristics of bismuth doped silica fibers,” Opt. Mater. 31(2), 223–228 (2008).
[CrossRef]

Quimby, R. S.

Raveau, B.

S. Boudin, A. Grandin, M. Borel, A. Leclaire, and B. Raveau, “Redetermination of the β-Ca2P207 structure,” Acta Crystallogr. C 49(12), 2062 (1993).
[CrossRef]

Razdobreev, I.

I. Razdobreev, V. Y. Ivanov, L. Bigot, M. Godlewski, and E. F. Kustov, “Optically detected magnetic resonance in bismuth-doped silica glass,” Opt. Lett. 34(17), 2691–2693 (2009).
[CrossRef] [PubMed]

V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[CrossRef]

Ren, J.

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloy. Comp. 463(1-2), L5–L8 (2008).
[CrossRef]

G. Dong, X. Xiao, J. Ren, J. Ruan, X. Liu, J. Qiu, C. Lin, H. Tao, and X. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
[CrossRef]

Ruan, J.

J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express 17(7), 5163–5169 (2009).
[CrossRef] [PubMed]

G. Dong, X. Xiao, J. Ren, J. Ruan, X. Liu, J. Qiu, C. Lin, H. Tao, and X. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Schoemaker, D.

E. Goovaerts, S. Nistor, and D. Schoemaker, “Electron-spin-resonance and optical study of the Bi0(6p3) center in KCl,” Phys. Rev. B 42(7), 3810–3817 (1990).
[CrossRef]

Shannon, R.

R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[CrossRef]

Sharonov, M. Y.

Shen, Y.

Y. Qiu and Y. Shen, “Investigation on the spectral characteristics of bismuth doped silica fibers,” Opt. Mater. 31(2), 223–228 (2008).
[CrossRef]

Shimaoka, F.

Shirai, M.

J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. 43(17), 2230–2234 (2004).
[CrossRef]

Shubochkin, R. L.

Shulman, I.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B 95(4), 801–805 (2009).
[CrossRef]

Si, J.

J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. 43(17), 2230–2234 (2004).
[CrossRef]

Sleight, A. W.

N. Kumada, N. Takahashi, N. Kinomura, and A. W. Sleight, “Preparation and crystal structure of a new lithium bismuth oxide: LiBiO3,” J. Solid State Chem. 126(1), 121–126 (1996).
[CrossRef]

Sokolov, V. O.

Stiegelschmitt, A.

Su, L.

Su, Q.

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4: Eu2+ phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[CrossRef]

Sun, H. T.

Suzuki, T.

M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).
[CrossRef]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[CrossRef]

Sverchkov, S.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B 95(4), 801–805 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007).
[CrossRef]

Takahashi, N.

N. Kumada, N. Takahashi, N. Kinomura, and A. W. Sleight, “Preparation and crystal structure of a new lithium bismuth oxide: LiBiO3,” J. Solid State Chem. 126(1), 121–126 (1996).
[CrossRef]

Tanabe, S.

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77(6), 818–820 (2000).
[CrossRef]

Tao, H.

G. Dong, X. Xiao, J. Ren, J. Ruan, X. Liu, J. Qiu, C. Lin, H. Tao, and X. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Truong, V.

V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

Umnikov, A.

V. Dvoirin, V. Mashinsky, O. Medvedkov, A. Umnikov, A. Gur’yanov, and E. Dianov, “Bismuth-doped telecommunication fibres for lasers and amplifiers in the 1400-1500-nm region,” Quantum Electron. 39(6), 583–584 (2009).
[CrossRef]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

Wang, C.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
[CrossRef]

Wondraczek, L.

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett. 34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009).
[CrossRef]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[CrossRef] [PubMed]

Wu, B.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

Wu, E.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

Wu, F.

Xia, H.

Xiao, X.

G. Dong, X. Xiao, J. Ren, J. Ruan, X. Liu, J. Qiu, C. Lin, H. Tao, and X. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Xu, J.

Xu-hui, Z.

Z. Xu-hui and L. Jian-bang, “A hollow cathode bismuth ion laser,” Appl. Phys. B 29(4), 291–292 (1982).
[CrossRef]

Yang, H.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

Yang, I.

Yang, Q.

Yang, Y.

Yashkov, M.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

Ye, S.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

Young-Seok, S.

T. Ohkura, Y. Fujimoto, M. Nakatsuka, and S. Young-Seok, “Local structures of bismuth ion in bismuth-doped silica glasses analyzed using Bi LIII X-Ray absorption fine structure,” J. Am. Ceram. Soc. 90(11), 3596–3600 (2007).
[CrossRef]

Yu, J.

Zagorodnev, V. N.

Zeng, H.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

Zhao, Q.

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009).
[CrossRef]

Zhao, Q. Z.

Zhao, X.

G. Dong, X. Xiao, J. Ren, J. Ruan, X. Liu, J. Qiu, C. Lin, H. Tao, and X. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Zheng, L.

Zhou, P.

Zhou, S.

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

Zhu, B.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

Zhu, C.

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloy. Comp. 463(1-2), L5–L8 (2008).
[CrossRef]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. 43(17), 2230–2234 (2004).
[CrossRef]

Zhu, C. S.

Zollfrank, C.

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[CrossRef] [PubMed]

Acta Crystallogr. A

R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[CrossRef]

Acta Crystallogr. C

S. Boudin, A. Grandin, M. Borel, A. Leclaire, and B. Raveau, “Redetermination of the β-Ca2P207 structure,” Acta Crystallogr. C 49(12), 2062 (1993).
[CrossRef]

J. Barbier and J. Echard, “A new refinement of α-Sr2P2O7,” Acta Crystallogr. C 54(12), IUC9800070 (1998).
[CrossRef]

A. ElBelghitti, A. Elmarzouki, A. Boukhari, and E. M. Holt, “σ-dibarium pyrophosphate,” Acta Crystallogr. C 51(8), 1478–1480 (1995).
[CrossRef]

Adv. Funct. Mater.

S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008).
[CrossRef]

Angew. Chem. Int. Ed.

J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. 43(17), 2230–2234 (2004).
[CrossRef]

Appl. Phys. B

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B 95(4), 801–805 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007).
[CrossRef]

Z. Xu-hui and L. Jian-bang, “A hollow cathode bismuth ion laser,” Appl. Phys. B 29(4), 291–292 (1982).
[CrossRef]

Appl. Phys. Lett.

V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008).
[CrossRef]

S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77(6), 818–820 (2000).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[CrossRef]

I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007).
[CrossRef]

Chin. Phys. Lett.

G. Dong, X. Xiao, J. Ren, J. Ruan, X. Liu, J. Qiu, C. Lin, H. Tao, and X. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

J. Alloy. Comp.

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloy. Comp. 463(1-2), L5–L8 (2008).
[CrossRef]

J. Am. Ceram. Soc.

T. Ohkura, Y. Fujimoto, M. Nakatsuka, and S. Young-Seok, “Local structures of bismuth ion in bismuth-doped silica glasses analyzed using Bi LIII X-Ray absorption fine structure,” J. Am. Ceram. Soc. 90(11), 3596–3600 (2007).
[CrossRef]

Y. Fujimoto, “Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass,” J. Am. Ceram. Soc. 93(2), 581–589 (2010).
[CrossRef]

M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009).
[CrossRef]

J. Appl. Phys.

M. Chou and T. Cool, “Laser operation by dissociation of metal complexes: New transitions in arsenic, bismuth, gallium, germanium, mercury, indium, lead, antimony, and thallium,” J. Appl. Phys. 47, 1055–1061 (1976).
[CrossRef]

J. Ceram. Soc. Jpn.

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007).
[CrossRef]

J. Chem. Phys.

S. Drosch and G. Gerber, “Optically pumped cw molecular bismuth laser,” J. Chem. Phys. 77(1), 123–130 (1982).
[CrossRef]

J. Mater. Chem.

M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4: Eu2+ phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003).
[CrossRef]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009).
[CrossRef]

S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009).
[CrossRef]

J. Mater. Res.

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
[CrossRef]

J. Non-Cryst. Solids

J. Duffy, “Redox equilibria in glass,” J. Non-Cryst. Solids 196, 45–50 (1996).
[CrossRef]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

J. Phys. Condens. Matter

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[CrossRef] [PubMed]

J. Solid State Chem.

N. Kumada, N. Takahashi, N. Kinomura, and A. W. Sleight, “Preparation and crystal structure of a new lithium bismuth oxide: LiBiO3,” J. Solid State Chem. 126(1), 121–126 (1996).
[CrossRef]

G. Blasse, “Energy transfer between inequivalent Eu2+ ions,” J. Solid State Chem. 62(2), 207–211 (1986).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett. 34(19), 2885–2887 (2009).
[CrossRef] [PubMed]

M. Y. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses,” Opt. Lett. 33(18), 2131–2133 (2008).
[CrossRef] [PubMed]

I. Razdobreev, V. Y. Ivanov, L. Bigot, M. Godlewski, and E. F. Kustov, “Optically detected magnetic resonance in bismuth-doped silica glass,” Opt. Lett. 34(17), 2691–2693 (2009).
[CrossRef] [PubMed]

L. Su, J. Yu, P. Zhou, H. Li, L. Zheng, Y. Yang, F. Wu, H. Xia, and J. Xu, “Broadband near-infrared luminescence in γ-irradiated Bi-doped α-BaB(2)O(4) single crystals,” Opt. Lett. 34(16), 2504–2506 (2009).
[CrossRef] [PubMed]

A. G. Okhrimchuk, L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zagorodnev, and K. N. Boldyrev, “Near-infrared luminescence of RbPb2Cl5:Bi crystals,” Opt. Lett. 33(19), 2182–2184 (2008).
[CrossRef] [PubMed]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33(13), 1488–1490 (2008).
[CrossRef] [PubMed]

H. T. Sun, Y. Miwa, F. Shimaoka, M. Fujii, A. Hosokawa, M. Mizuhata, S. Hayashi, and S. Deki, “Superbroadband near-IR nano-optical source based on bismuth-doped high-silica nanocrystalline zeolites,” Opt. Lett. 34(8), 1219–1221 (2009).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

R. S. Quimby, R. L. Shubochkin, and T. F. Morse, “High quantum efficiency of near-infrared emission in bismuth doped AlGeP-silica fiber,” Opt. Lett. 34(20), 3181–3183 (2009).
[CrossRef] [PubMed]

Opt. Mater.

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009).
[CrossRef]

Y. Qiu and Y. Shen, “Investigation on the spectral characteristics of bismuth doped silica fibers,” Opt. Mater. 31(2), 223–228 (2008).
[CrossRef]

Philips Res. Rep.

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131–144 (1969).

Phys. Rev. B

E. Goovaerts, S. Nistor, and D. Schoemaker, “Electron-spin-resonance and optical study of the Bi0(6p3) center in KCl,” Phys. Rev. B 42(7), 3810–3817 (1990).
[CrossRef]

Quantum Electron.

V. Dvoirin, V. Mashinsky, O. Medvedkov, A. Umnikov, A. Gur’yanov, and E. Dianov, “Bismuth-doped telecommunication fibres for lasers and amplifiers in the 1400-1500-nm region,” Quantum Electron. 39(6), 583–584 (2009).
[CrossRef]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

Other

http://www.ill.eu/sites/fullprof/ (2009).

J. Slater, Quantum theory of molecules and solids, Symmetry and energy bands in crystals, (McGraw-Hill Inc. 1965) Vol. 2 pg. 55.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

XRD pattern of Ba03A and corresponding Rietveld refining results. The inset shows the coordination environment of a Ba(1)- (inset A) and Ba (2)-site (inset B). Inset (C) schematically shows stacking of the two Ba-layers in a unit cell. P and O atoms are omitted for clarity.

Fig. 2
Fig. 2

A: NIR emission spectra of Ba10A excited at 586nm, 723 nm (dotted lines: Gaussian peak fits), 838nm and 924nm, respectively, and dependence of NIR emission intensity on nominal bismuth concentration (inset). B: Uncorrected excitation spectra of Ba10A for emission at 1100 and 1150 nm, respectively.

Fig. 3
Fig. 3

A: Emission (λex = 286, 388 and 618 nm) and excitation spectra (λem = 716 and 733 nm) of Bi2+ in Ba10B; and excitation spectra (λem = 716 nm) of samples Ba01B, Ba30B and Ba50B (curves I, II and III respectively). Insets show a zoom at the spectral regions 370-400nm (left) and 600-630nm (right). B: Lifetime and relative fluorescence intensity of B-type Ba2(1-x)P2O7: 2xBi (x = 0.001, 0.003, 0.005, 0.01, 0.02, 0.03, 0.05).

Fig. 4
Fig. 4

Time resolved emission (λex = 286 nm) spectra of Ba10B (labels: delay time).

Fig. 5
Fig. 5

Emission and excitation spectra of Ca03A (1: λex = 465nm; 3: λem = 653nm) and Sr03A (2: λex = 450nm; 4: λem = 702nm).

Fig. 6
Fig. 6

Emission spectra of Ba03A, Ba03B, Ba03C and Ba03D under 723 nm excitation. The curve of Ba03D is shifted vertically for clarity.

Tables (1)

Tables Icon

Table 1 Relative difference in ionic radii (Dr, %) between matrix cations and various Bi species (data on effective ionic radii taken from Refs.44, 45).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R c = 6 V / ( π x c N ) 3
R c 6 = 3 × 10 12 × f E 4 f ( E ) F ( E ) d E
D r = 100 × [ R m ( C N ) R d ( C N ) ] / R m ( C N )

Metrics