Abstract

This study investigated theoretically and experimentally that two-photon excited fluorescence is enhanced and quenched via surface plasmons (SPs) excited by total internal reflection with a silver film. The fluorescence intensity is fundamentally affected by the local electromagnetic field enhancement and the quantum yield change according to the surrounding structure and materials. By utilizing the Fresnel equation and classical dipole radiation modeling, local electric field enhancement, fluorescence quantum yield, and fluorescence emission coupling yield via SPs were theoretically analyzed at different dielectric spacer thicknesses between the fluorescence dye and the metal film. The fluorescence lifetime was also decreased substantially via the quenching effect. A two-photon excited total internal reflection fluorescence (TIRF) microscopy with a time-correlated single photon counting device has been developed to measure the fluorescence lifetimes, photostabilities, and enhancements. The experimental results demonstrate that the fluorescence lifetimes and the trend of the enhancements are consistent with the theoretical analysis. The maximum fluorescence enhancement factor in the surface plasmon-total internal reflection fluorescence (SP-TIRF) configuration can be increased up to 30 fold with a suitable thickness SiO2 spacer. Also, to compromise for the fluorescence enhancement and the fluorophore photostability, we find that the SP-TIRF configuration with a 10 nm SiO2 spacer can provide an enhanced and less photobleached fluorescent signal via the assistance of enhanced local electromagnetic field and quenched fluorescence lifetime, respectively.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rohrbach, “Observing secretory granules with a multiangle evanescent wave microscope,” Biophys. J. 78(5), 2641–2654 (2000).
    [CrossRef] [PubMed]
  2. F. Schapper, J. T. Gonçalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent wave excitation,” Eur. Biophys. J. 32(7), 635–643 (2003).
    [CrossRef] [PubMed]
  3. M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D Appl. Phys. 38(10), R185–R197 (2005).
    [CrossRef]
  4. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
    [CrossRef] [PubMed]
  5. E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
    [CrossRef]
  6. K. Tawa and W. Knoll, “Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy,” Nucleic Acids Res. 32(8), 2372–2377 (2004).
    [CrossRef] [PubMed]
  7. F. Yu, B. Persson, S. Löfås, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76(22), 6765–6770 (2004).
    [CrossRef] [PubMed]
  8. E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334(2), 303–311 (2004).
    [CrossRef] [PubMed]
  9. O. Stranik, H. M. McEvoy, C. McDonagh, and B. D. MacCraith, “Plasmonic enhancement of fluorescence for sensor applications,” Sens. Actuators B Chem. 107(1), 148–153 (2005).
    [CrossRef]
  10. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1998).
  11. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
    [CrossRef] [PubMed]
  12. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [CrossRef] [PubMed]
  13. W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4(8), 236–238 (1979).
    [CrossRef] [PubMed]
  14. J. Enderlein and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express 13(22), 8855–8865 (2005).
    [CrossRef] [PubMed]
  15. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
    [CrossRef]
  16. C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
    [CrossRef]
  17. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
    [CrossRef] [PubMed]
  18. R. Y. He, G. L. Chang, H. L. Wu, C. H. Lin, K. C. Chiu, Y. D. Su, and S. J. Chen, “Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy,” Opt. Express 14(20), 9307–9316 (2006).
    [CrossRef] [PubMed]
  19. R.-Y. He, Y.-D. Su, K.-C. Cho, C.-Y. Lin, N.-S. Chang, C.-H. Chang, and S.-J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17(8), 5987–5997 (2009).
    [CrossRef] [PubMed]
  20. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. I. Plane-wave spectrum approach to modeling classical effects,” J. Opt. Soc. Am. B 14(5), 1149–1159 (1997).
    [CrossRef]
  21. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. II. Enhanced fluorescence in optical waveguide sensors,” J. Opt. Soc. Am. B 14(5), 1160–1166 (1997).
    [CrossRef]
  22. H. Benisty, R. Stanley, and M. Mayer, “Method of source terms for dipole emission modification in modes of arbitrary planar structures,” J. Opt. Soc. Am. A 15(5), 1192–1201 (1998).
    [CrossRef]
  23. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part I: Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34(9), 1612–1631 (1998).
    [CrossRef]
  24. V. V. N. Ravi Kishore, K. L. Narasimhan, and N. Periasamy, “On the radiative lifetime, quantum yield and fluorescence decay of Alq in thin films,” Phys. Chem. Chem. Phys. 5(7), 1386–1391 (2003).
    [CrossRef]
  25. M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13(5), 054021 (2008).
    [CrossRef] [PubMed]
  26. I. Gryczynski, J. Malicka, J. R. Lakowicz, E. M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1-2), 173–176 (2005).
    [CrossRef]
  27. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Lett. 465(1-3), 92–95 (2008).
    [CrossRef]
  28. D. G. Zhang, X.-C. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49(5), 875–879 (2010).
    [CrossRef] [PubMed]
  29. D. G. Zhang, X.-C. Yuan, A. Bouhelier, P. Wang, and H. Ming, “Excitation of surface plasmon polaritons guided mode by Rhodamine B molecules doped in a PMMA stripe,” Opt. Lett. 35(3), 408–410 (2010).
    [CrossRef] [PubMed]

2010

2009

2008

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13(5), 054021 (2008).
[CrossRef] [PubMed]

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Lett. 465(1-3), 92–95 (2008).
[CrossRef]

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
[CrossRef]

2007

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[CrossRef] [PubMed]

2006

2005

O. Stranik, H. M. McEvoy, C. McDonagh, and B. D. MacCraith, “Plasmonic enhancement of fluorescence for sensor applications,” Sens. Actuators B Chem. 107(1), 148–153 (2005).
[CrossRef]

J. Enderlein and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express 13(22), 8855–8865 (2005).
[CrossRef] [PubMed]

M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D Appl. Phys. 38(10), R185–R197 (2005).
[CrossRef]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, J. R. Lakowicz, E. M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1-2), 173–176 (2005).
[CrossRef]

2004

K. Tawa and W. Knoll, “Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy,” Nucleic Acids Res. 32(8), 2372–2377 (2004).
[CrossRef] [PubMed]

F. Yu, B. Persson, S. Löfås, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76(22), 6765–6770 (2004).
[CrossRef] [PubMed]

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334(2), 303–311 (2004).
[CrossRef] [PubMed]

2003

F. Schapper, J. T. Gonçalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent wave excitation,” Eur. Biophys. J. 32(7), 635–643 (2003).
[CrossRef] [PubMed]

V. V. N. Ravi Kishore, K. L. Narasimhan, and N. Periasamy, “On the radiative lifetime, quantum yield and fluorescence decay of Alq in thin films,” Phys. Chem. Chem. Phys. 5(7), 1386–1391 (2003).
[CrossRef]

2002

C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[CrossRef]

2001

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[CrossRef] [PubMed]

2000

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[CrossRef]

A. Rohrbach, “Observing secretory granules with a multiangle evanescent wave microscope,” Biophys. J. 78(5), 2641–2654 (2000).
[CrossRef] [PubMed]

1998

H. Benisty, R. Stanley, and M. Mayer, “Method of source terms for dipole emission modification in modes of arbitrary planar structures,” J. Opt. Soc. Am. A 15(5), 1192–1201 (1998).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part I: Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34(9), 1612–1631 (1998).
[CrossRef]

1997

1979

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Aslan, K.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[CrossRef] [PubMed]

Benisty, H.

H. Benisty, R. Stanley, and M. Mayer, “Method of source terms for dipole emission modification in modes of arbitrary planar structures,” J. Opt. Soc. Am. A 15(5), 1192–1201 (1998).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part I: Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34(9), 1612–1631 (1998).
[CrossRef]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Bouhelier, A.

Calander, N.

I. Gryczynski, J. Malicka, J. R. Lakowicz, E. M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1-2), 173–176 (2005).
[CrossRef]

Chang, C.-H.

Chang, G. L.

Chang, N.-S.

Chen, S. J.

Chen, S.-J.

Chiu, K. C.

Cho, K.-C.

Chowdhury, M. H.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Lett. 465(1-3), 92–95 (2008).
[CrossRef]

De Neve, H.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part I: Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34(9), 1612–1631 (1998).
[CrossRef]

Eagen, C. F.

Enderlein, J.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13(5), 054021 (2008).
[CrossRef] [PubMed]

J. Enderlein and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express 13(22), 8855–8865 (2005).
[CrossRef] [PubMed]

Fort, E.

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
[CrossRef]

Geddes, C. D.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[CrossRef] [PubMed]

C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[CrossRef]

Goldys, E. M.

I. Gryczynski, J. Malicka, J. R. Lakowicz, E. M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1-2), 173–176 (2005).
[CrossRef]

Gonçalves, J. T.

F. Schapper, J. T. Gonçalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent wave excitation,” Eur. Biophys. J. 32(7), 635–643 (2003).
[CrossRef] [PubMed]

Gresillon, S.

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
[CrossRef]

Gryczynski, I.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, J. R. Lakowicz, E. M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1-2), 173–176 (2005).
[CrossRef]

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334(2), 303–311 (2004).
[CrossRef] [PubMed]

Gryczynski, Z.

I. Gryczynski, J. Malicka, J. R. Lakowicz, E. M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1-2), 173–176 (2005).
[CrossRef]

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334(2), 303–311 (2004).
[CrossRef] [PubMed]

Hall, D. G.

He, R. Y.

He, R.-Y.

Huang, B.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[CrossRef] [PubMed]

Knoll, W.

F. Yu, B. Persson, S. Löfås, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76(22), 6765–6770 (2004).
[CrossRef] [PubMed]

K. Tawa and W. Knoll, “Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy,” Nucleic Acids Res. 32(8), 2372–2377 (2004).
[CrossRef] [PubMed]

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[CrossRef]

Lakowicz, J. R.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Lett. 465(1-3), 92–95 (2008).
[CrossRef]

I. Gryczynski, J. Malicka, J. R. Lakowicz, E. M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1-2), 173–176 (2005).
[CrossRef]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[CrossRef] [PubMed]

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334(2), 303–311 (2004).
[CrossRef] [PubMed]

C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[CrossRef] [PubMed]

Liebermann, T.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[CrossRef]

Lin, C. H.

Lin, C.-Y.

Löfås, S.

F. Yu, B. Persson, S. Löfås, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76(22), 6765–6770 (2004).
[CrossRef] [PubMed]

MacCraith, B. D.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13(5), 054021 (2008).
[CrossRef] [PubMed]

O. Stranik, H. M. McEvoy, C. McDonagh, and B. D. MacCraith, “Plasmonic enhancement of fluorescence for sensor applications,” Sens. Actuators B Chem. 107(1), 148–153 (2005).
[CrossRef]

Malicka, J.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, J. R. Lakowicz, E. M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1-2), 173–176 (2005).
[CrossRef]

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334(2), 303–311 (2004).
[CrossRef] [PubMed]

Matveeva, E.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[CrossRef] [PubMed]

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334(2), 303–311 (2004).
[CrossRef] [PubMed]

Mayer, M.

McDonagh, C.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13(5), 054021 (2008).
[CrossRef] [PubMed]

O. Stranik, H. M. McEvoy, C. McDonagh, and B. D. MacCraith, “Plasmonic enhancement of fluorescence for sensor applications,” Sens. Actuators B Chem. 107(1), 148–153 (2005).
[CrossRef]

McEvoy, H. M.

O. Stranik, H. M. McEvoy, C. McDonagh, and B. D. MacCraith, “Plasmonic enhancement of fluorescence for sensor applications,” Sens. Actuators B Chem. 107(1), 148–153 (2005).
[CrossRef]

Ming, H.

Narasimhan, K. L.

V. V. N. Ravi Kishore, K. L. Narasimhan, and N. Periasamy, “On the radiative lifetime, quantum yield and fluorescence decay of Alq in thin films,” Phys. Chem. Chem. Phys. 5(7), 1386–1391 (2003).
[CrossRef]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Oheim, M.

M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D Appl. Phys. 38(10), R185–R197 (2005).
[CrossRef]

F. Schapper, J. T. Gonçalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent wave excitation,” Eur. Biophys. J. 32(7), 635–643 (2003).
[CrossRef] [PubMed]

Periasamy, N.

V. V. N. Ravi Kishore, K. L. Narasimhan, and N. Periasamy, “On the radiative lifetime, quantum yield and fluorescence decay of Alq in thin films,” Phys. Chem. Chem. Phys. 5(7), 1386–1391 (2003).
[CrossRef]

Persson, B.

F. Yu, B. Persson, S. Löfås, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76(22), 6765–6770 (2004).
[CrossRef] [PubMed]

Ravi Kishore, V. V. N.

V. V. N. Ravi Kishore, K. L. Narasimhan, and N. Periasamy, “On the radiative lifetime, quantum yield and fluorescence decay of Alq in thin films,” Phys. Chem. Chem. Phys. 5(7), 1386–1391 (2003).
[CrossRef]

Ray, K.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Lett. 465(1-3), 92–95 (2008).
[CrossRef]

Rohrbach, A.

A. Rohrbach, “Observing secretory granules with a multiangle evanescent wave microscope,” Biophys. J. 78(5), 2641–2654 (2000).
[CrossRef] [PubMed]

Ruckstuhl, T.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13(5), 054021 (2008).
[CrossRef] [PubMed]

J. Enderlein and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express 13(22), 8855–8865 (2005).
[CrossRef] [PubMed]

Schapper, F.

M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D Appl. Phys. 38(10), R185–R197 (2005).
[CrossRef]

F. Schapper, J. T. Gonçalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent wave excitation,” Eur. Biophys. J. 32(7), 635–643 (2003).
[CrossRef] [PubMed]

Stanley, R.

Stranik, O.

O. Stranik, H. M. McEvoy, C. McDonagh, and B. D. MacCraith, “Plasmonic enhancement of fluorescence for sensor applications,” Sens. Actuators B Chem. 107(1), 148–153 (2005).
[CrossRef]

Su, Y. D.

Su, Y.-D.

Sullivan, K. G.

Tawa, K.

K. Tawa and W. Knoll, “Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy,” Nucleic Acids Res. 32(8), 2372–2377 (2004).
[CrossRef] [PubMed]

Trnavsky, M.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13(5), 054021 (2008).
[CrossRef] [PubMed]

Wang, P.

Weber, W. H.

Weisbuch, C.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part I: Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34(9), 1612–1631 (1998).
[CrossRef]

Wu, H. L.

Yu, F.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[CrossRef] [PubMed]

F. Yu, B. Persson, S. Löfås, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76(22), 6765–6770 (2004).
[CrossRef] [PubMed]

Yuan, X.-C.

Zare, R. N.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[CrossRef] [PubMed]

Zhang, D. G.

Anal. Biochem.

E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334(2), 303–311 (2004).
[CrossRef] [PubMed]

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[CrossRef] [PubMed]

Anal. Chem.

F. Yu, B. Persson, S. Löfås, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76(22), 6765–6770 (2004).
[CrossRef] [PubMed]

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[CrossRef] [PubMed]

Appl. Opt.

Biophys. J.

A. Rohrbach, “Observing secretory granules with a multiangle evanescent wave microscope,” Biophys. J. 78(5), 2641–2654 (2000).
[CrossRef] [PubMed]

Chem. Phys. Lett.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Lett. 465(1-3), 92–95 (2008).
[CrossRef]

Colloids Surf. A Physicochem. Eng. Asp.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A Physicochem. Eng. Asp. 171(1-3), 115–130 (2000).
[CrossRef]

Curr. Opin. Biotechnol.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[CrossRef] [PubMed]

Eur. Biophys. J.

F. Schapper, J. T. Gonçalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent wave excitation,” Eur. Biophys. J. 32(7), 635–643 (2003).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part I: Basic concepts and analytical trends,” IEEE J. Quantum Electron. 34(9), 1612–1631 (1998).
[CrossRef]

J. Biomed. Opt.

M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13(5), 054021 (2008).
[CrossRef] [PubMed]

J. Fluoresc.

C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D Appl. Phys. 38(10), R185–R197 (2005).
[CrossRef]

E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
[CrossRef]

Nucleic Acids Res.

K. Tawa and W. Knoll, “Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy,” Nucleic Acids Res. 32(8), 2372–2377 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

V. V. N. Ravi Kishore, K. L. Narasimhan, and N. Periasamy, “On the radiative lifetime, quantum yield and fluorescence decay of Alq in thin films,” Phys. Chem. Chem. Phys. 5(7), 1386–1391 (2003).
[CrossRef]

Phys. Rev. Lett.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

O. Stranik, H. M. McEvoy, C. McDonagh, and B. D. MacCraith, “Plasmonic enhancement of fluorescence for sensor applications,” Sens. Actuators B Chem. 107(1), 148–153 (2005).
[CrossRef]

Thin Solid Films

I. Gryczynski, J. Malicka, J. R. Lakowicz, E. M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491(1-2), 173–176 (2005).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic diagram of the optical setup of the two-photon excited fluorescence by objective-coupled TIRF and (b) the configuration of the SP-TIRF chip.

Fig. 2
Fig. 2

Local electric field enhancement factors for (a) vertical electric field and (b) horizontal electric field.

Fig. 3
Fig. 3

The variations of (a) the fluorescence lifetime and (b) modified quantum yield as function of dielectric spacer thickness.

Fig. 4
Fig. 4

Fluorescence emission coupling yield in the SP-TIRF configuration compared to that in the conventional TIRF configuration.

Fig. 5
Fig. 5

Simulated fluorescence enhancement factor governed by the local electric field enhancement factor, the quantum yield, and the emission coupling yield as function of spacer thickness.

Fig. 6
Fig. 6

Experimental results for the fluorescence (a) lifetime and (b) photostability as function of spacer thickness.

Fig. 7
Fig. 7

The overall enhancement factor of the fluorescence intensity as function of spacer thickness.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

p ¨ + b 0 p ˙ + ω 0 2 p = ( q 2 m ) E ,
b b 0 = 1 Q 0 + Q 0 0 I ( u ) d u ,
( b b 0 ) V E D = 1 Q 0 + Q 0 3 2 Re ( 0 d u u 3 1 u 2 ( 1 + r 3210 p e j 2 k 3 z h ) ( 1 + r 34 p e j 2 k 3 z ( d 3 h ) ) ) 1 r 3210 p r 34 p e j 2 k 3 z d 3 ) ,
( b b 0 ) H E D = 1 Q 0 + Q 0 3 4 Re ( 0 d u u 1 u 2 ( ( 1 u 2 ) ( 1 r 3210 p e j 2 k 3 z h ) ( 1 r 34 p e j 2 k 3 z ( d 3 h ) ) 1 r 3210 p r 34 p e j 2 k 3 z d 4                                                                                   + ( 1 + r 3210 s e j 2 k 3 z h ) ( 1 + r 34 s e j 2 k 3 z ( d 3 h ) ) 1 r 3210 s r 34 s e j 2 k 3 z d 3 ) ) ,
τ = 1 / [ 1 3 ( b b 0 ) V E D + 2 3 ( b b 0 ) H E D ] ,
Q = 0 1 I ( u ) d u / 0 I ( u ) d u .
P ( θ ) = P 3 ( θ 3 ) T 3210 | 1 + r 34 e j 2 k 3 z ( d 3 h ) 1 r 3210 r 34 e j 2 k 3 z d 3 | 2 n 0 k 0 z n 3 k 3 z e | Im ( 2 k 3 z h ) | ,
E P = 0 π / 2 2 π P ( θ ) sin θ d θ .
F ( I 0 F E ) 2 Q E P

Metrics