Abstract

This work describes a proposed 60-GHz radio-over-fiber (RoF) system employing a frequency sextupling optical up-conversion scheme. Based on the modified single sideband modulation scheme, spectrally efficient vector signals were transmitted with no performance degradation due to dispersion-induced fading. Wavelength-division- multiplexed optical up-conversion can be realized using the proposed system. Since the required transmitter bandwidth is significantly reduced, radio-frequency components with lower bandwidth and higher reliability can be utilized. Both 13.75-Gb/s QPSK-OFDM and 20.625-Gb/s 8QAM-OFDM signals were experimentally demonstrated. After transmission over 25-km of standard single mode fiber, no significant received power penalty was observed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Chien, A. Chowdhury, Z. Jia, Y. T. Hsueh, and G. K. Chang, “60 GHz millimeter-wave gigabit wireless services over long-reach passive optical network using remote signal regeneration and upconversion,” Opt. Express 17(5), 3016–3041 (2009).
    [CrossRef]
  2. J. J. V. Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Reconfigurable 2.5-Gb/s Baseband and 60-GHz (155-Mb/s) Millimeter-Waveband Radio-Over-Fiber (Interleaving) Access Network,” IEEE J. Lightwave Technol. 26(15), 2506–2512 (2008).
    [CrossRef]
  3. C. T. Lin, P. T. Shih, Y. H. Chen, W. J. Jiang, J. Chen, and S. Chi, “Experimental Demonstration of 10-Gb/s OFDM-QPSK Signal at 60GHz Using Frequency-Doubling and Tandem SSB Moudlation,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, OMV7 (2009).
  4. M. Weiß, M. Huchard, A. Stöhr, B. Charbonnier, S. Fedderwitz, and D. S. Jäger, “60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s,” IEEE J. Lightwave Technol. 26(15), 2424–2429 (2008).
    [CrossRef]
  5. Y. X. Guo, B. Luo, C. S. Park, L. C. Ong, M.-T. Zhou, and S. Kato, “60 GHz Radio-over-Fiber for Gbps Transmission,” Proceedings on Global Symposium on Millimeter Waves (GSMM), Invited paper (2008).
  6. C. T. Lin, P. T. Shih, Y. H. Chen, W. J. Jiang, J. Chen, and S. Chi, “Experimental Demonstration of 10-Gb/s OFDM-QPSK Signal at 60GHz Using Frequency-Doubling and Tandem SSB Moudlation,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, OMV7 (2009).
  7. S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-Wave Propagation Channel Characterization for Short-Range Wireless Communications,” IEEE Trans. Vehicular Technol. 58(1), 3–13 (2009).
    [CrossRef]
  8. C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
    [CrossRef]
  9. C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
    [CrossRef]
  10. P. T. Shih, C. T. Lin, W. J. Jiang, J. J. Chen, H. S. Huang, Y. H. Chen, P. C. Peng, and S. Chi, “WDM up-conversion employing frequency quadrupling in optical modulator,” Opt. Express 17(3), 1726–1733 (2009).
    [CrossRef] [PubMed]
  11. W. R. Peng, X. Wu, V. R. Arbab, B. Shamee, J. Y. Yang, L. C. Christen, K. M. Feng, A. E. Willner and S.Chi, “Experimental demonstration of 340 km SSMF transmission using a virtual single sideband OFDM signal that employs carrier suppressed and iterative detection techniques,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, OMU1 (2008).
  12. S. L. Jansen, I. Morita, and H. Tanaka, “Carrier-to-signal power ratio in fiber-optic SSB-OFDM transmission systems,” in Proc. Institute of Electronics, Information and Communication Engineers (IEICE) Conference 2007, B-10–24.

2009

2008

C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

J. J. V. Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Reconfigurable 2.5-Gb/s Baseband and 60-GHz (155-Mb/s) Millimeter-Waveband Radio-Over-Fiber (Interleaving) Access Network,” IEEE J. Lightwave Technol. 26(15), 2506–2512 (2008).
[CrossRef]

M. Weiß, M. Huchard, A. Stöhr, B. Charbonnier, S. Fedderwitz, and D. S. Jäger, “60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s,” IEEE J. Lightwave Technol. 26(15), 2424–2429 (2008).
[CrossRef]

2006

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[CrossRef]

Attygalle, M.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[CrossRef]

Chang, G. K.

Charbonnier, B.

M. Weiß, M. Huchard, A. Stöhr, B. Charbonnier, S. Fedderwitz, and D. S. Jäger, “60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s,” IEEE J. Lightwave Technol. 26(15), 2424–2429 (2008).
[CrossRef]

Chen, J.

C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Chen, J. J.

Chen, Y. H.

Chi, S.

P. T. Shih, C. T. Lin, W. J. Jiang, J. J. Chen, H. S. Huang, Y. H. Chen, P. C. Peng, and S. Chi, “WDM up-conversion employing frequency quadrupling in optical modulator,” Opt. Express 17(3), 1726–1733 (2009).
[CrossRef] [PubMed]

C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Chien, H. C.

Chowdhury, A.

Dai, S. P.

C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Fedderwitz, S.

M. Weiß, M. Huchard, A. Stöhr, B. Charbonnier, S. Fedderwitz, and D. S. Jäger, “60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s,” IEEE J. Lightwave Technol. 26(15), 2424–2429 (2008).
[CrossRef]

Geng, S.

S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-Wave Propagation Channel Characterization for Short-Range Wireless Communications,” IEEE Trans. Vehicular Technol. 58(1), 3–13 (2009).
[CrossRef]

Hsueh, Y. T.

Huang, H. S.

Huchard, M.

M. Weiß, M. Huchard, A. Stöhr, B. Charbonnier, S. Fedderwitz, and D. S. Jäger, “60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s,” IEEE J. Lightwave Technol. 26(15), 2424–2429 (2008).
[CrossRef]

Jäger, D. S.

M. Weiß, M. Huchard, A. Stöhr, B. Charbonnier, S. Fedderwitz, and D. S. Jäger, “60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s,” IEEE J. Lightwave Technol. 26(15), 2424–2429 (2008).
[CrossRef]

Jia, Z.

Jiang, W. J.

Kitayama, K.

J. J. V. Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Reconfigurable 2.5-Gb/s Baseband and 60-GHz (155-Mb/s) Millimeter-Waveband Radio-Over-Fiber (Interleaving) Access Network,” IEEE J. Lightwave Technol. 26(15), 2506–2512 (2008).
[CrossRef]

Kivinen, J.

S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-Wave Propagation Channel Characterization for Short-Range Wireless Communications,” IEEE Trans. Vehicular Technol. 58(1), 3–13 (2009).
[CrossRef]

Kuri, T.

J. J. V. Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Reconfigurable 2.5-Gb/s Baseband and 60-GHz (155-Mb/s) Millimeter-Waveband Radio-Over-Fiber (Interleaving) Access Network,” IEEE J. Lightwave Technol. 26(15), 2506–2512 (2008).
[CrossRef]

Lim, C.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[CrossRef]

Lin, C. T.

P. T. Shih, C. T. Lin, W. J. Jiang, J. J. Chen, H. S. Huang, Y. H. Chen, P. C. Peng, and S. Chi, “WDM up-conversion employing frequency quadrupling in optical modulator,” Opt. Express 17(3), 1726–1733 (2009).
[CrossRef] [PubMed]

C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Nirmalathas, A.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[CrossRef]

Novak, D.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[CrossRef]

Olmos, J. J. V.

J. J. V. Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Reconfigurable 2.5-Gb/s Baseband and 60-GHz (155-Mb/s) Millimeter-Waveband Radio-Over-Fiber (Interleaving) Access Network,” IEEE J. Lightwave Technol. 26(15), 2506–2512 (2008).
[CrossRef]

Peng, P. C.

P. T. Shih, C. T. Lin, W. J. Jiang, J. J. Chen, H. S. Huang, Y. H. Chen, P. C. Peng, and S. Chi, “WDM up-conversion employing frequency quadrupling in optical modulator,” Opt. Express 17(3), 1726–1733 (2009).
[CrossRef] [PubMed]

C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Shih, P. T.

P. T. Shih, C. T. Lin, W. J. Jiang, J. J. Chen, H. S. Huang, Y. H. Chen, P. C. Peng, and S. Chi, “WDM up-conversion employing frequency quadrupling in optical modulator,” Opt. Express 17(3), 1726–1733 (2009).
[CrossRef] [PubMed]

C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Sono, T.

J. J. V. Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Reconfigurable 2.5-Gb/s Baseband and 60-GHz (155-Mb/s) Millimeter-Waveband Radio-Over-Fiber (Interleaving) Access Network,” IEEE J. Lightwave Technol. 26(15), 2506–2512 (2008).
[CrossRef]

Stöhr, A.

M. Weiß, M. Huchard, A. Stöhr, B. Charbonnier, S. Fedderwitz, and D. S. Jäger, “60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s,” IEEE J. Lightwave Technol. 26(15), 2424–2429 (2008).
[CrossRef]

Tamura, K.

J. J. V. Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Reconfigurable 2.5-Gb/s Baseband and 60-GHz (155-Mb/s) Millimeter-Waveband Radio-Over-Fiber (Interleaving) Access Network,” IEEE J. Lightwave Technol. 26(15), 2506–2512 (2008).
[CrossRef]

Toda, H.

J. J. V. Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Reconfigurable 2.5-Gb/s Baseband and 60-GHz (155-Mb/s) Millimeter-Waveband Radio-Over-Fiber (Interleaving) Access Network,” IEEE J. Lightwave Technol. 26(15), 2506–2512 (2008).
[CrossRef]

Vainikainen, P.

S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-Wave Propagation Channel Characterization for Short-Range Wireless Communications,” IEEE Trans. Vehicular Technol. 58(1), 3–13 (2009).
[CrossRef]

Waterhouse, R.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[CrossRef]

Weiß, M.

M. Weiß, M. Huchard, A. Stöhr, B. Charbonnier, S. Fedderwitz, and D. S. Jäger, “60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s,” IEEE J. Lightwave Technol. 26(15), 2424–2429 (2008).
[CrossRef]

Zhao, X.

S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-Wave Propagation Channel Characterization for Short-Range Wireless Communications,” IEEE Trans. Vehicular Technol. 58(1), 3–13 (2009).
[CrossRef]

IEEE J. Lightwave Technol.

J. J. V. Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Reconfigurable 2.5-Gb/s Baseband and 60-GHz (155-Mb/s) Millimeter-Waveband Radio-Over-Fiber (Interleaving) Access Network,” IEEE J. Lightwave Technol. 26(15), 2506–2512 (2008).
[CrossRef]

M. Weiß, M. Huchard, A. Stöhr, B. Charbonnier, S. Fedderwitz, and D. S. Jäger, “60-GHz Photonic Millimeter-Wave Link for Short- to Medium-Range Wireless Transmission Up to 12.5 Gb/s,” IEEE J. Lightwave Technol. 26(15), 2424–2429 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

C. T. Lin, S. P. Dai, J. Chen, P. T. Shih, P. C. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microw. Theory Tech. 54(5), 2181–2187 (2006).
[CrossRef]

IEEE Trans. Vehicular Technol.

S. Geng, J. Kivinen, X. Zhao, and P. Vainikainen, “Millimeter-Wave Propagation Channel Characterization for Short-Range Wireless Communications,” IEEE Trans. Vehicular Technol. 58(1), 3–13 (2009).
[CrossRef]

Opt. Express

Other

W. R. Peng, X. Wu, V. R. Arbab, B. Shamee, J. Y. Yang, L. C. Christen, K. M. Feng, A. E. Willner and S.Chi, “Experimental demonstration of 340 km SSMF transmission using a virtual single sideband OFDM signal that employs carrier suppressed and iterative detection techniques,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, OMU1 (2008).

S. L. Jansen, I. Morita, and H. Tanaka, “Carrier-to-signal power ratio in fiber-optic SSB-OFDM transmission systems,” in Proc. Institute of Electronics, Information and Communication Engineers (IEICE) Conference 2007, B-10–24.

Y. X. Guo, B. Luo, C. S. Park, L. C. Ong, M.-T. Zhou, and S. Kato, “60 GHz Radio-over-Fiber for Gbps Transmission,” Proceedings on Global Symposium on Millimeter Waves (GSMM), Invited paper (2008).

C. T. Lin, P. T. Shih, Y. H. Chen, W. J. Jiang, J. Chen, and S. Chi, “Experimental Demonstration of 10-Gb/s OFDM-QPSK Signal at 60GHz Using Frequency-Doubling and Tandem SSB Moudlation,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, OMV7 (2009).

C. T. Lin, P. T. Shih, Y. H. Chen, W. J. Jiang, J. Chen, and S. Chi, “Experimental Demonstration of 10-Gb/s OFDM-QPSK Signal at 60GHz Using Frequency-Doubling and Tandem SSB Moudlation,” in Proc. Optical Fiber Communication Conf. (OFC), San Diego, OMV7 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Conceptual diagram of the 60-GHz vector signal generation system with frequency sextupling.

Fig. 2
Fig. 2

The principle of the proposed RoF system.

Fig. 3
Fig. 3

Experimental setup of the proposed system.

Fig. 4
Fig. 4

Bit error rate versus optical power ratio curve and constellation diagrams of the QPSK-OFDM signal,and constellations with (a) −1-dB OPR, (b) 6-dB OPR, and (c) 9-dB OPR

Fig. 5
Fig. 5

Error vector magnitude versus optical power ratio curve and constellation diagrams of the 8QAM-OFDM signal, and constellations with (a) 0-dB OPR, (b) 5-dB OPR, and 10-dB OPR.

Fig. 6
Fig. 6

Bit error rate curves of the QPSK-OFDM signal fiber transmission results.

Fig. 7
Fig. 7

Error vector magnitude curves of the 8QAM-OFDM signal fiber transmission results.

Metrics