Abstract

We have recently developed a spectral re-shaping technique to simultaneously measure nonlinear refractive index and nonlinear absorption. In this technique, the information about the nonlinearities is encoded in the frequency domain, rather than in the spatial domain as in the conventional Z-scan method. Here we show that frequency encoding is much more robust with respect to scattering. We compare spectral re-shaping and Z-scan measurements in a highly scattering environment and show that reliable spectral re-shaping measurements can be performed even in a regime that precludes standard Z-scans.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n(2) measurements,” Opt. Lett. 14(17), 955–957 (1989).
    [CrossRef] [PubMed]
  2. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [CrossRef]
  3. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. VanStryland, and M. Sheik Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
    [CrossRef]
  4. K. S. Bindra, S. M. Oak, and K. C. Rustagi, “Intensity dependence of Z-scan in semiconductor-doped glasses for separation of third and fifth order contributions in the below band gap region,” Opt. Commun. 168(1-4), 219–225 (1999).
    [CrossRef]
  5. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
    [CrossRef]
  6. S. L. Gómez, F. L. S. Cuppo, A. M. Figueiredo Neto, T. Kosa, M. Muramatsu, and R. J. Horowicz, “Z-scan measurement of the nonlinear refractive indices of micellar lyotropic liquid crystals with and without the ferrofluid doping,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3059–3063 (1999).
    [CrossRef]
  7. B. A. Rockwell, W. P. Roach, M. E. Rogers, M. W. Mayo, C. A. Toth, C. P. Cain, and G. D. Noojin, “Nonlinear refraction in vitreous humor,” Opt. Lett. 18(21), 1792–1794 (1993).
    [CrossRef] [PubMed]
  8. W. S. Warren, M. C. Fischer, and T. Ye, “Cellular imaging - Novel nonlinear contrast improves deep-tissue microscopy,” Laser Focus World 43, 99–103 (2007).
  9. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  10. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22(17), 1323–1325 (1997).
    [CrossRef]
  11. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [CrossRef]
  12. D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
    [CrossRef] [PubMed]
  13. D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, “Probing skin pigmentation changes with transient absorption imaging of eumelanin and pheomelanin,” J. Biomed. Opt. 13(5), 054036 (2008).
    [CrossRef] [PubMed]
  14. D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
    [CrossRef] [PubMed]
  15. K. Isobe, S. Kataoka, R. Murase, W. Watanabe, T. Higashi, S. Kawakami, S. Matsunaga, K. Fukui, and K. Itoh, “Stimulated parametric emission microscopy,” Opt. Express 14(2), 786–793 (2006).
    [CrossRef] [PubMed]
  16. M. C. Fischer, H. C. Liu, I. R. Piletic, Y. Escobedo-Lozoya, R. Yasuda, and W. S. Warren, “Self-phase modulation signatures of neuronal activity,” Opt. Lett. 33(3), 219–221 (2008).
    [CrossRef] [PubMed]
  17. M. C. Fischer, T. Ye, G. Yurtsever, A. Miller, M. Ciocca, W. Wagner, and W. S. Warren, “Two-photon absorption and self-phase modulation measurements with shaped femtosecond laser pulses,” Opt. Lett. 30(12), 1551–1553 (2005).
    [CrossRef] [PubMed]
  18. M. C. Fischer, H. C. Liu, I. R. Piletic, and W. S. Warren, “Simultaneous self-phase modulation and two-photon absorption measurement by a spectral homodyne Z-scan method,” Opt. Express 16(6), 4192–4205 (2008).
    [CrossRef] [PubMed]
  19. M. C. Fischer, H. Liu, I. R. Piletic, T. Ye, R. Yasuda, and W. S. Warren, “Self-phase modulation and two-photon absorption imaging of cells and active neurons,” in Progress in Biomedical Optics and Imaging - Proceedings of SPIE (SPIE, Bellingham WA, United States, 2007), 64421J.
  20. P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. McKay, and R. G. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater. 6(3), 251–293 (1997).
    [CrossRef]
  21. J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11(6), 1009–1017 (1994).
    [CrossRef]
  22. I. Guedes, L. Misoguti, L. De Boni, and S. C. Zilio, “Heterodyne Z-scan measurements of slow absorbers,” J. Appl. Phys. 101(6), 063112 (2007).
    [CrossRef]
  23. J.-M. Ménard, M. Betz, I. Sigal, and H. M. van Driel, “Single-beam differential z-scan technique,” Appl. Opt. 46(11), 2119–2122 (2007).
    [CrossRef] [PubMed]
  24. T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/10(4) wave-front distortion,” Opt. Lett. 19(5), 317–319 (1994).
    [CrossRef] [PubMed]
  25. G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, “Z-scan technique through beam radius measurements,” Appl. Phys. B 76(1), 83–86 (2003).
    [CrossRef]
  26. R. E. Bridges, G. L. Fischer, and R. W. Boyd, “Z-scan measurement technique for non-Gaussian beams and arbitrary sample thicknesses,” Opt. Lett. 20(17), 1821–1823 (1995).
    [CrossRef] [PubMed]
  27. C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19(10), 737–739 (1994).
    [CrossRef] [PubMed]

2008

2007

I. Guedes, L. Misoguti, L. De Boni, and S. C. Zilio, “Heterodyne Z-scan measurements of slow absorbers,” J. Appl. Phys. 101(6), 063112 (2007).
[CrossRef]

J.-M. Ménard, M. Betz, I. Sigal, and H. M. van Driel, “Single-beam differential z-scan technique,” Appl. Opt. 46(11), 2119–2122 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

W. S. Warren, M. C. Fischer, and T. Ye, “Cellular imaging - Novel nonlinear contrast improves deep-tissue microscopy,” Laser Focus World 43, 99–103 (2007).

2006

2005

2004

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

2003

G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, “Z-scan technique through beam radius measurements,” Appl. Phys. B 76(1), 83–86 (2003).
[CrossRef]

1999

S. L. Gómez, F. L. S. Cuppo, A. M. Figueiredo Neto, T. Kosa, M. Muramatsu, and R. J. Horowicz, “Z-scan measurement of the nonlinear refractive indices of micellar lyotropic liquid crystals with and without the ferrofluid doping,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3059–3063 (1999).
[CrossRef]

K. S. Bindra, S. M. Oak, and K. C. Rustagi, “Intensity dependence of Z-scan in semiconductor-doped glasses for separation of third and fifth order contributions in the below band gap region,” Opt. Commun. 168(1-4), 219–225 (1999).
[CrossRef]

1997

Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22(17), 1323–1325 (1997).
[CrossRef]

P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. McKay, and R. G. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater. 6(3), 251–293 (1997).
[CrossRef]

1996

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. VanStryland, and M. Sheik Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

1995

1994

1993

1991

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[CrossRef]

1990

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1989

Alfano, R. R.

Betz, M.

Bindra, K. S.

K. S. Bindra, S. M. Oak, and K. C. Rustagi, “Intensity dependence of Z-scan in semiconductor-doped glasses for separation of third and fifth order contributions in the below band gap region,” Opt. Commun. 168(1-4), 219–225 (1999).
[CrossRef]

Boyd, R. W.

Bridges, R. E.

Cain, C. P.

Chapple, P. B.

P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. McKay, and R. G. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater. 6(3), 251–293 (1997).
[CrossRef]

Chen, B. J.

Cheng, J. X.

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Ciocca, M.

Cuppo, F. L. S.

S. L. Gómez, F. L. S. Cuppo, A. M. Figueiredo Neto, T. Kosa, M. Muramatsu, and R. J. Horowicz, “Z-scan measurement of the nonlinear refractive indices of micellar lyotropic liquid crystals with and without the ferrofluid doping,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3059–3063 (1999).
[CrossRef]

De Boni, L.

I. Guedes, L. Misoguti, L. De Boni, and S. C. Zilio, “Heterodyne Z-scan measurements of slow absorbers,” J. Appl. Phys. 101(6), 063112 (2007).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. VanStryland, and M. Sheik Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

Escobedo-Lozoya, Y.

Fakis, M.

G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, “Z-scan technique through beam radius measurements,” Appl. Phys. B 76(1), 83–86 (2003).
[CrossRef]

Figueiredo Neto, A. M.

S. L. Gómez, F. L. S. Cuppo, A. M. Figueiredo Neto, T. Kosa, M. Muramatsu, and R. J. Horowicz, “Z-scan measurement of the nonlinear refractive indices of micellar lyotropic liquid crystals with and without the ferrofluid doping,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3059–3063 (1999).
[CrossRef]

Fischer, G. L.

Fischer, M. C.

Fu, D.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, “Probing skin pigmentation changes with transient absorption imaging of eumelanin and pheomelanin,” J. Biomed. Opt. 13(5), 054036 (2008).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

Fukui, K.

Giannetas, V.

G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, “Z-scan technique through beam radius measurements,” Appl. Phys. B 76(1), 83–86 (2003).
[CrossRef]

Gómez, S. L.

S. L. Gómez, F. L. S. Cuppo, A. M. Figueiredo Neto, T. Kosa, M. Muramatsu, and R. J. Horowicz, “Z-scan measurement of the nonlinear refractive indices of micellar lyotropic liquid crystals with and without the ferrofluid doping,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3059–3063 (1999).
[CrossRef]

Goswami, D.

Grichnik, J.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, “Probing skin pigmentation changes with transient absorption imaging of eumelanin and pheomelanin,” J. Biomed. Opt. 13(5), 054036 (2008).
[CrossRef] [PubMed]

Guedes, I.

I. Guedes, L. Misoguti, L. De Boni, and S. C. Zilio, “Heterodyne Z-scan measurements of slow absorbers,” J. Appl. Phys. 101(6), 063112 (2007).
[CrossRef]

Guo, Y.

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. VanStryland, and M. Sheik Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11(6), 1009–1017 (1994).
[CrossRef]

T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/10(4) wave-front distortion,” Opt. Lett. 19(5), 317–319 (1994).
[CrossRef] [PubMed]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Harris, D.

Hermann, J. A.

P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. McKay, and R. G. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater. 6(3), 251–293 (1997).
[CrossRef]

Higashi, T.

Hillegas, C. W.

Ho, P. P.

Hong, L.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, “Probing skin pigmentation changes with transient absorption imaging of eumelanin and pheomelanin,” J. Biomed. Opt. 13(5), 054036 (2008).
[CrossRef] [PubMed]

Horowicz, R. J.

S. L. Gómez, F. L. S. Cuppo, A. M. Figueiredo Neto, T. Kosa, M. Muramatsu, and R. J. Horowicz, “Z-scan measurement of the nonlinear refractive indices of micellar lyotropic liquid crystals with and without the ferrofluid doping,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3059–3063 (1999).
[CrossRef]

Hutchings, D. C.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[CrossRef]

Isobe, K.

Itoh, K.

Kataoka, S.

Kawakami, S.

Kosa, T.

S. L. Gómez, F. L. S. Cuppo, A. M. Figueiredo Neto, T. Kosa, M. Muramatsu, and R. J. Horowicz, “Z-scan measurement of the nonlinear refractive indices of micellar lyotropic liquid crystals with and without the ferrofluid doping,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3059–3063 (1999).
[CrossRef]

Liu, F.

Liu, H. C.

Matsunaga, S.

Matthews, T. E.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, “Probing skin pigmentation changes with transient absorption imaging of eumelanin and pheomelanin,” J. Biomed. Opt. 13(5), 054036 (2008).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[CrossRef] [PubMed]

Mayo, M. W.

McDuff, R. G.

P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. McKay, and R. G. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater. 6(3), 251–293 (1997).
[CrossRef]

McKay, T. J.

P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. McKay, and R. G. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater. 6(3), 251–293 (1997).
[CrossRef]

Ménard, J.-M.

Miller, A.

Misoguti, L.

I. Guedes, L. Misoguti, L. De Boni, and S. C. Zilio, “Heterodyne Z-scan measurements of slow absorbers,” J. Appl. Phys. 101(6), 063112 (2007).
[CrossRef]

Muramatsu, M.

S. L. Gómez, F. L. S. Cuppo, A. M. Figueiredo Neto, T. Kosa, M. Muramatsu, and R. J. Horowicz, “Z-scan measurement of the nonlinear refractive indices of micellar lyotropic liquid crystals with and without the ferrofluid doping,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3059–3063 (1999).
[CrossRef]

Murase, R.

Noojin, G. D.

Oak, S. M.

K. S. Bindra, S. M. Oak, and K. C. Rustagi, “Intensity dependence of Z-scan in semiconductor-doped glasses for separation of third and fifth order contributions in the below band gap region,” Opt. Commun. 168(1-4), 219–225 (1999).
[CrossRef]

Persephonis, P.

G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, “Z-scan technique through beam radius measurements,” Appl. Phys. B 76(1), 83–86 (2003).
[CrossRef]

Piletic, I. R.

Polyzos, I.

G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, “Z-scan technique through beam radius measurements,” Appl. Phys. B 76(1), 83–86 (2003).
[CrossRef]

Roach, W. P.

Rockwell, B. A.

Rogers, M. E.

Rustagi, K. C.

K. S. Bindra, S. M. Oak, and K. C. Rustagi, “Intensity dependence of Z-scan in semiconductor-doped glasses for separation of third and fifth order contributions in the below band gap region,” Opt. Commun. 168(1-4), 219–225 (1999).
[CrossRef]

Sacks, P.

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. VanStryland, and M. Sheik Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11(6), 1009–1017 (1994).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n(2) measurements,” Opt. Lett. 14(17), 955–957 (1989).
[CrossRef] [PubMed]

Savage, H.

Schantz, S.

Sheik Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. VanStryland, and M. Sheik Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

Sheik-Bahae, M.

T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/10(4) wave-front distortion,” Opt. Lett. 19(5), 317–319 (1994).
[CrossRef] [PubMed]

J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11(6), 1009–1017 (1994).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n(2) measurements,” Opt. Lett. 14(17), 955–957 (1989).
[CrossRef] [PubMed]

Sigal, I.

Simon, J. D.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, “Probing skin pigmentation changes with transient absorption imaging of eumelanin and pheomelanin,” J. Biomed. Opt. 13(5), 054036 (2008).
[CrossRef] [PubMed]

Staromlynska, J.

P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. McKay, and R. G. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater. 6(3), 251–293 (1997).
[CrossRef]

Strickland, D.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Toth, C. A.

Tsigaridas, G.

G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, “Z-scan technique through beam radius measurements,” Appl. Phys. B 76(1), 83–86 (2003).
[CrossRef]

Tull, J. X.

van Driel, H. M.

Van Stryland, E. W.

T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/10(4) wave-front distortion,” Opt. Lett. 19(5), 317–319 (1994).
[CrossRef] [PubMed]

J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11(6), 1009–1017 (1994).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n(2) measurements,” Opt. Lett. 14(17), 955–957 (1989).
[CrossRef] [PubMed]

VanStryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. VanStryland, and M. Sheik Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

Wagner, W.

Wang, J.

Warren, W. S.

M. C. Fischer, H. C. Liu, I. R. Piletic, and W. S. Warren, “Simultaneous self-phase modulation and two-photon absorption measurement by a spectral homodyne Z-scan method,” Opt. Express 16(6), 4192–4205 (2008).
[CrossRef] [PubMed]

M. C. Fischer, H. C. Liu, I. R. Piletic, Y. Escobedo-Lozoya, R. Yasuda, and W. S. Warren, “Self-phase modulation signatures of neuronal activity,” Opt. Lett. 33(3), 219–221 (2008).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, “Probing skin pigmentation changes with transient absorption imaging of eumelanin and pheomelanin,” J. Biomed. Opt. 13(5), 054036 (2008).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

W. S. Warren, M. C. Fischer, and T. Ye, “Cellular imaging - Novel nonlinear contrast improves deep-tissue microscopy,” Laser Focus World 43, 99–103 (2007).

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[CrossRef] [PubMed]

M. C. Fischer, T. Ye, G. Yurtsever, A. Miller, M. Ciocca, W. Wagner, and W. S. Warren, “Two-photon absorption and self-phase modulation measurements with shaped femtosecond laser pulses,” Opt. Lett. 30(12), 1551–1553 (2005).
[CrossRef] [PubMed]

C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19(10), 737–739 (1994).
[CrossRef] [PubMed]

Watanabe, W.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Xia, T.

Xie, X. S.

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Yasuda, R.

Ye, T.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, “Probing skin pigmentation changes with transient absorption imaging of eumelanin and pheomelanin,” J. Biomed. Opt. 13(5), 054036 (2008).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

W. S. Warren, M. C. Fischer, and T. Ye, “Cellular imaging - Novel nonlinear contrast improves deep-tissue microscopy,” Laser Focus World 43, 99–103 (2007).

M. C. Fischer, T. Ye, G. Yurtsever, A. Miller, M. Ciocca, W. Wagner, and W. S. Warren, “Two-photon absorption and self-phase modulation measurements with shaped femtosecond laser pulses,” Opt. Lett. 30(12), 1551–1553 (2005).
[CrossRef] [PubMed]

Yurtserver, G.

Yurtsever, G.

Zhadin, N.

Zilio, S. C.

I. Guedes, L. Misoguti, L. De Boni, and S. C. Zilio, “Heterodyne Z-scan measurements of slow absorbers,” J. Appl. Phys. 101(6), 063112 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. B

G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, “Z-scan technique through beam radius measurements,” Appl. Phys. B 76(1), 83–86 (2003).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. VanStryland, and M. Sheik Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. van Stryland, “Dispersion of Bound Electronic Nonlinear Refraction in Solids,” IEEE J. Quantum Electron. 27(6), 1296–1309 (1991).
[CrossRef]

J. Appl. Phys.

I. Guedes, L. Misoguti, L. De Boni, and S. C. Zilio, “Heterodyne Z-scan measurements of slow absorbers,” J. Appl. Phys. 101(6), 063112 (2007).
[CrossRef]

J. Biomed. Opt.

D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, and W. S. Warren, “Probing skin pigmentation changes with transient absorption imaging of eumelanin and pheomelanin,” J. Biomed. Opt. 13(5), 054036 (2008).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[CrossRef] [PubMed]

J. Nonlinear Opt. Phys. Mater.

P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. McKay, and R. G. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater. 6(3), 251–293 (1997).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Laser Focus World

W. S. Warren, M. C. Fischer, and T. Ye, “Cellular imaging - Novel nonlinear contrast improves deep-tissue microscopy,” Laser Focus World 43, 99–103 (2007).

Opt. Commun.

K. S. Bindra, S. M. Oak, and K. C. Rustagi, “Intensity dependence of Z-scan in semiconductor-doped glasses for separation of third and fifth order contributions in the below band gap region,” Opt. Commun. 168(1-4), 219–225 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

M. C. Fischer, H. C. Liu, I. R. Piletic, Y. Escobedo-Lozoya, R. Yasuda, and W. S. Warren, “Self-phase modulation signatures of neuronal activity,” Opt. Lett. 33(3), 219–221 (2008).
[CrossRef] [PubMed]

M. C. Fischer, T. Ye, G. Yurtsever, A. Miller, M. Ciocca, W. Wagner, and W. S. Warren, “Two-photon absorption and self-phase modulation measurements with shaped femtosecond laser pulses,” Opt. Lett. 30(12), 1551–1553 (2005).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett. 32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n(2) measurements,” Opt. Lett. 14(17), 955–957 (1989).
[CrossRef] [PubMed]

B. A. Rockwell, W. P. Roach, M. E. Rogers, M. W. Mayo, C. A. Toth, C. P. Cain, and G. D. Noojin, “Nonlinear refraction in vitreous humor,” Opt. Lett. 18(21), 1792–1794 (1993).
[CrossRef] [PubMed]

Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett. 22(17), 1323–1325 (1997).
[CrossRef]

R. E. Bridges, G. L. Fischer, and R. W. Boyd, “Z-scan measurement technique for non-Gaussian beams and arbitrary sample thicknesses,” Opt. Lett. 20(17), 1821–1823 (1995).
[CrossRef] [PubMed]

C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19(10), 737–739 (1994).
[CrossRef] [PubMed]

T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/10(4) wave-front distortion,” Opt. Lett. 19(5), 317–319 (1994).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

S. L. Gómez, F. L. S. Cuppo, A. M. Figueiredo Neto, T. Kosa, M. Muramatsu, and R. J. Horowicz, “Z-scan measurement of the nonlinear refractive indices of micellar lyotropic liquid crystals with and without the ferrofluid doping,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(3), 3059–3063 (1999).
[CrossRef]

Science

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other

M. C. Fischer, H. Liu, I. R. Piletic, T. Ye, R. Yasuda, and W. S. Warren, “Self-phase modulation and two-photon absorption imaging of cells and active neurons,” in Progress in Biomedical Optics and Imaging - Proceedings of SPIE (SPIE, Bellingham WA, United States, 2007), 64421J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simplified schematic of the experimental setup.

Fig. 2
Fig. 2

Part (a) shows spectral re-shaping scans at concentrations C0, C1 and C2. Part (b) shows averaged Z-scan traces at concentrations C0 and C1. The red lines in the graphs are the corresponding fit traces. Part (c) shows relative linear transmission of the sample as a function of concentration of intralipid in water. Also marked in (c) are the concentrations C0, C1 and C2 used in parts (a) and (b). The spectral re-shaping and Z-scan traces are averages of 9 scans performed at multiple transverse positions of the cuvette (to reduce the influence of possible sample impurities).

Fig. 3
Fig. 3

Relative nonlinear self-phase modulation (SPM) signals in the glass slide as a function of concentration of the intralipid solution. Shown are spectral re-shaping (top) and Z-scan results (bottom). The inset shows a high-resolution scan for low concentrations. In the bottom panel we also show two-photon absorption (TPA) signals in a colored glass filter. The values and error bars are best fit values and fit errors, respectively. The fit was performed on an average of 9 traces and the resulting fit values were normalized by the value for pure water. Also shown as lines in each graph is the expected signal drop-off based on a focal intensity reduction due to scattering.

Fig. 4
Fig. 4

Ratio of best fit values for the nonlinear coefficient to the fit error (standard deviation) for the spectral re-shaping and Z-scan technique as a function of concentration of the intralipid solution. The fit was performed on a 9-trace average. Note that the incident power used for the Z-scan was about three times higher than the power used for the spectral re-shaping technique.

Fig. 5
Fig. 5

Ratio of best fit values for the nonlinear coefficient to the fit error (standard deviation) for the Z-scan technique with decreasing input power in comparison to increased scattering. The two x-axes are scaled to match the power reaching the sample at each point.

Metrics