Abstract

A multimode pumping scheme for Er3+/Yb3+ co-doped waveguide amplifiers based on broad area lasers at around 980 nm is presented. The proposed amplifier is fabricated by ion-exchange (IE) technique on silicate and phosphate glasses. The highly efficient energy transfer from Yb3+ to Er3+ ions, combined with the use of low cost and high power broad area laser, allows the realization of high performance and cost-effective integrated amplifiers. The structure has been designed and numerically studied using a 3D finite element modelling tool, and over 3 dB/cm small signal gain has been predicted for an optimized amplifier. Preliminary characterization of an amplifier structure provides a first experimental evidence of the novel multimode longitudinal pumping.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  2. K. Wada, D. H. Ahn, D. R. Lim, J. Michel, and L. C. Kimerling, “Si microphotonics for optical interconnection,” Thin Solid Films 508(1-2), 418–421 (2006).
    [CrossRef]
  3. H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
    [CrossRef]
  4. L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8x10Gb/s DWDM transmission over 240km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
    [CrossRef]
  5. E.J. Murphy, “Integrated optical circuits and components: design and applications,” CRC press, 1 edition (Aug 3 1999)
  6. R. J. Beach, S. C. Mitchell, H. E. Meissner, O. R. Meissner, W. F. Krupke, J. M. McMahon, W. J. Bennett, and D. P. Shepherd, “Continuous-wave and passively Q-switched cladding-pumped planar waveguide lasers,” Opt. Lett. 26(12), 881–883 (2001).
    [CrossRef]
  7. P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332 (2003).
    [CrossRef]
  8. L. Li, A. Schülzgen, V. L. Temyanko, T. Qiu, M. M. Morrell, Q. Wang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Short-length microstructured phosphate glass fiber lasers with large mode areas,” Opt. Lett. 30(10), 1141–1143 (2005).
    [CrossRef] [PubMed]
  9. J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. St. Andre, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9(2), 247–249 (1997).
    [CrossRef]
  10. D. Barbier, J. M. Delavaux, A. Kevorkian, P. Gastaldo, and J. M. Jouanno, “Yb/Er integrated optics amplifers on phosphate glass in single and double- pass configuration,” in Proceedings of Optical Fiber Communications (OFC), San Diego, CA, USA, March 1995.
  11. F. Gardillou, L. Bastard, and J.-E. Broquin, “4.25 dB gain in a hybrid silicate/phosphate glasses optical amplifier made by wafer bonding and ion-exchange techniques,” Appl. Phys. Lett. 85(22), 5176–5178 (2004).
    [CrossRef]
  12. V. Toccafondo, S. Faralli and F. Di Pasquale, “Integrated Er3+/Yb3+ co-doped silica waveguide amplifiers longitudinally pumped by broad area lasers,” Paper JTha12 in Proceedings of Optical Fiber Communications (OFC), San Diego, CA, USA, Feb. 2008.
  13. F. Di Pasquale, S. Faralli, and V. Toccafondo, “Er3+/Yb3+ co-doped silica waveguide amplifiers longitudinally pumped by broad area lasers,” IEEE Photon. Technol. Lett. 19(24), 1967–1969 (2007).
    [CrossRef]
  14. V. Donzella, S. Faralli, and F. Di Pasquale, “Effect of Si-nc to Er3+ coupling ratio and multimode resonant pumping on EDWAs performance,” 21st Annual LEOS Meeting, WV 5, Nov. 2008.
  15. A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–892 (2004).
    [CrossRef]
  16. D. Barbier, M. Rattay, F. Saint-Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9(3), 315–317 (1997).
    [CrossRef]
  17. E. Snoeks, G. N. van den Hoven, and A. Polman, “Optimization of an Er-Doped Silica Glass Optical Waveguide Amplifier,” IEEE J. Quantum Electron. 32(9), 1680–1684 (1996).
    [CrossRef]
  18. F. Rehouma and K. E. Aiadi, “Glasses for ion-exchange technology,” Int. J. Commun. 1(6), 148–155 (2008).
  19. J. Grelin, E. Ghibaudo, and J. E. Broquin, “Study of deeply buried waveguides: A way towards 3D integration,” Mater. Sci. Eng. B 149(2), 185–189 (2008).
    [CrossRef]
  20. V. Donzella, S. Faralli, V. Toccafondo, and F. Di Pasquale, “Effect of Si-nanocluster to Er3+ coupling ratio in EDWAs longitudinally pumped by visible broad area lasers,” J. Lightwave Technol. 27(12), 3342–3350 (2008).
    [CrossRef]
  21. C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90(9), 4314–4320 (2001).
    [CrossRef]
  22. M. Federighi and F. Di Pasquale, “The Effect of Pair-Induced Energy Transfer on the Performance of Silica Waveguide Amplifiers with High Er3+/Yb3+ Concentrations,” IEEE Photon. Technol. Lett. 7(3), 303–305 (1995).
    [CrossRef]
  23. W. Q. Shi, M. Bass, and M. Birnbaum, “Effects of energy transfer among E3+ ions on the fluorescence decay and lasing properties of heavily doped Er:Y3Al5O12,” J. Opt. Soc. Am. B 7(8), 1456–1462 (1990).
    [CrossRef]
  24. F. Di Pasquale and M. Federighi, “Modelling of Uniform and Pair- Induced Upconversion Mechanisms in High-Concentration Erbium-Doped Silica Waveguides,” IEEE J. Lightwave Technol. 13(9), 1858–1864 (1995).
    [CrossRef]
  25. J. Jin, The Finite Element Method in Electromagnetics, 2nd edition, (A Wiley-Interscience Publication, John Wiley & Sons, INC. 2002).
  26. K. Hayata, A. Misawa, and M. Koshiba, “Split-step finite-element method applied to nonlinear integrated optics,” J. Opt. Soc. Am. B 7(9), 1772–1784 (1990).
    [CrossRef]
  27. R. V. Ramaswamy and R. Srivastava, “Ion-Exchanged Glass Waveguides: A Review,” J. Lightwave Technol. 6(6), 984–1000 (1988).
    [CrossRef]
  28. I. Mozjerin, A. A. Hardy, and S. Ruschin, “Effect of chip area limitation on gain and noise of erbium-doped waveguide amplifiers,” IEEE J. Sel. Top. Quantum Electron. 11(1), 204–210 (2005).
    [CrossRef]

2008 (3)

F. Rehouma and K. E. Aiadi, “Glasses for ion-exchange technology,” Int. J. Commun. 1(6), 148–155 (2008).

J. Grelin, E. Ghibaudo, and J. E. Broquin, “Study of deeply buried waveguides: A way towards 3D integration,” Mater. Sci. Eng. B 149(2), 185–189 (2008).
[CrossRef]

V. Donzella, S. Faralli, V. Toccafondo, and F. Di Pasquale, “Effect of Si-nanocluster to Er3+ coupling ratio in EDWAs longitudinally pumped by visible broad area lasers,” J. Lightwave Technol. 27(12), 3342–3350 (2008).
[CrossRef]

2007 (2)

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

F. Di Pasquale, S. Faralli, and V. Toccafondo, “Er3+/Yb3+ co-doped silica waveguide amplifiers longitudinally pumped by broad area lasers,” IEEE Photon. Technol. Lett. 19(24), 1967–1969 (2007).
[CrossRef]

2006 (2)

B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

K. Wada, D. H. Ahn, D. R. Lim, J. Michel, and L. C. Kimerling, “Si microphotonics for optical interconnection,” Thin Solid Films 508(1-2), 418–421 (2006).
[CrossRef]

2005 (2)

L. Li, A. Schülzgen, V. L. Temyanko, T. Qiu, M. M. Morrell, Q. Wang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Short-length microstructured phosphate glass fiber lasers with large mode areas,” Opt. Lett. 30(10), 1141–1143 (2005).
[CrossRef] [PubMed]

I. Mozjerin, A. A. Hardy, and S. Ruschin, “Effect of chip area limitation on gain and noise of erbium-doped waveguide amplifiers,” IEEE J. Sel. Top. Quantum Electron. 11(1), 204–210 (2005).
[CrossRef]

2004 (2)

A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–892 (2004).
[CrossRef]

F. Gardillou, L. Bastard, and J.-E. Broquin, “4.25 dB gain in a hybrid silicate/phosphate glasses optical amplifier made by wafer bonding and ion-exchange techniques,” Appl. Phys. Lett. 85(22), 5176–5178 (2004).
[CrossRef]

2003 (1)

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332 (2003).
[CrossRef]

2001 (2)

2000 (1)

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8x10Gb/s DWDM transmission over 240km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

1997 (2)

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. St. Andre, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9(2), 247–249 (1997).
[CrossRef]

D. Barbier, M. Rattay, F. Saint-Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9(3), 315–317 (1997).
[CrossRef]

1996 (1)

E. Snoeks, G. N. van den Hoven, and A. Polman, “Optimization of an Er-Doped Silica Glass Optical Waveguide Amplifier,” IEEE J. Quantum Electron. 32(9), 1680–1684 (1996).
[CrossRef]

1995 (2)

M. Federighi and F. Di Pasquale, “The Effect of Pair-Induced Energy Transfer on the Performance of Silica Waveguide Amplifiers with High Er3+/Yb3+ Concentrations,” IEEE Photon. Technol. Lett. 7(3), 303–305 (1995).
[CrossRef]

F. Di Pasquale and M. Federighi, “Modelling of Uniform and Pair- Induced Upconversion Mechanisms in High-Concentration Erbium-Doped Silica Waveguides,” IEEE J. Lightwave Technol. 13(9), 1858–1864 (1995).
[CrossRef]

1990 (2)

1988 (1)

R. V. Ramaswamy and R. Srivastava, “Ion-Exchanged Glass Waveguides: A Review,” J. Lightwave Technol. 6(6), 984–1000 (1988).
[CrossRef]

Ahn, D. H.

K. Wada, D. H. Ahn, D. R. Lim, J. Michel, and L. C. Kimerling, “Si microphotonics for optical interconnection,” Thin Solid Films 508(1-2), 418–421 (2006).
[CrossRef]

Aiadi, K. E.

F. Rehouma and K. E. Aiadi, “Glasses for ion-exchange technology,” Int. J. Commun. 1(6), 148–155 (2008).

Barbier, D.

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. St. Andre, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9(2), 247–249 (1997).
[CrossRef]

D. Barbier, M. Rattay, F. Saint-Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9(3), 315–317 (1997).
[CrossRef]

Bass, M.

Bastard, L.

F. Gardillou, L. Bastard, and J.-E. Broquin, “4.25 dB gain in a hybrid silicate/phosphate glasses optical amplifier made by wafer bonding and ion-exchange techniques,” Appl. Phys. Lett. 85(22), 5176–5178 (2004).
[CrossRef]

Beach, R. J.

Bennett, W. J.

Binsma, J. J. M.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8x10Gb/s DWDM transmission over 240km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

Birnbaum, M.

Bowers, J. E.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

Broquin, J. E.

J. Grelin, E. Ghibaudo, and J. E. Broquin, “Study of deeply buried waveguides: A way towards 3D integration,” Mater. Sci. Eng. B 149(2), 185–189 (2008).
[CrossRef]

Broquin, J.-E.

F. Gardillou, L. Bastard, and J.-E. Broquin, “4.25 dB gain in a hybrid silicate/phosphate glasses optical amplifier made by wafer bonding and ion-exchange techniques,” Appl. Phys. Lett. 85(22), 5176–5178 (2004).
[CrossRef]

Clauss, G.

D. Barbier, M. Rattay, F. Saint-Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9(3), 315–317 (1997).
[CrossRef]

Cohen, O.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

Delavaux, J.-M. P.

D. Barbier, M. Rattay, F. Saint-Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9(3), 315–317 (1997).
[CrossRef]

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. St. Andre, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9(2), 247–249 (1997).
[CrossRef]

Di Pasquale, F.

V. Donzella, S. Faralli, V. Toccafondo, and F. Di Pasquale, “Effect of Si-nanocluster to Er3+ coupling ratio in EDWAs longitudinally pumped by visible broad area lasers,” J. Lightwave Technol. 27(12), 3342–3350 (2008).
[CrossRef]

F. Di Pasquale, S. Faralli, and V. Toccafondo, “Er3+/Yb3+ co-doped silica waveguide amplifiers longitudinally pumped by broad area lasers,” IEEE Photon. Technol. Lett. 19(24), 1967–1969 (2007).
[CrossRef]

M. Federighi and F. Di Pasquale, “The Effect of Pair-Induced Energy Transfer on the Performance of Silica Waveguide Amplifiers with High Er3+/Yb3+ Concentrations,” IEEE Photon. Technol. Lett. 7(3), 303–305 (1995).
[CrossRef]

F. Di Pasquale and M. Federighi, “Modelling of Uniform and Pair- Induced Upconversion Mechanisms in High-Concentration Erbium-Doped Silica Waveguides,” IEEE J. Lightwave Technol. 13(9), 1858–1864 (1995).
[CrossRef]

Donzella, V.

Fang, A. W.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

Faralli, S.

V. Donzella, S. Faralli, V. Toccafondo, and F. Di Pasquale, “Effect of Si-nanocluster to Er3+ coupling ratio in EDWAs longitudinally pumped by visible broad area lasers,” J. Lightwave Technol. 27(12), 3342–3350 (2008).
[CrossRef]

F. Di Pasquale, S. Faralli, and V. Toccafondo, “Er3+/Yb3+ co-doped silica waveguide amplifiers longitudinally pumped by broad area lasers,” IEEE Photon. Technol. Lett. 19(24), 1967–1969 (2007).
[CrossRef]

Fathpour, S.

Federighi, M.

F. Di Pasquale and M. Federighi, “Modelling of Uniform and Pair- Induced Upconversion Mechanisms in High-Concentration Erbium-Doped Silica Waveguides,” IEEE J. Lightwave Technol. 13(9), 1858–1864 (1995).
[CrossRef]

M. Federighi and F. Di Pasquale, “The Effect of Pair-Induced Energy Transfer on the Performance of Silica Waveguide Amplifiers with High Er3+/Yb3+ Concentrations,” IEEE Photon. Technol. Lett. 7(3), 303–305 (1995).
[CrossRef]

Gardillou, F.

F. Gardillou, L. Bastard, and J.-E. Broquin, “4.25 dB gain in a hybrid silicate/phosphate glasses optical amplifier made by wafer bonding and ion-exchange techniques,” Appl. Phys. Lett. 85(22), 5176–5178 (2004).
[CrossRef]

Garrett, L. D.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8x10Gb/s DWDM transmission over 240km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

Geraghty, D. F.

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332 (2003).
[CrossRef]

Ghibaudo, E.

J. Grelin, E. Ghibaudo, and J. E. Broquin, “Study of deeply buried waveguides: A way towards 3D integration,” Mater. Sci. Eng. B 149(2), 185–189 (2008).
[CrossRef]

Gnauck, A. H.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8x10Gb/s DWDM transmission over 240km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

Granlund, S.

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. St. Andre, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9(2), 247–249 (1997).
[CrossRef]

Grelin, J.

J. Grelin, E. Ghibaudo, and J. E. Broquin, “Study of deeply buried waveguides: A way towards 3D integration,” Mater. Sci. Eng. B 149(2), 185–189 (2008).
[CrossRef]

Hardy, A. A.

I. Mozjerin, A. A. Hardy, and S. Ruschin, “Effect of chip area limitation on gain and noise of erbium-doped waveguide amplifiers,” IEEE J. Sel. Top. Quantum Electron. 11(1), 204–210 (2005).
[CrossRef]

Hayata, K.

Honkanen, S.

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332 (2003).
[CrossRef]

Jalali, B.

Jones, R.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

Kevorkian, A.

D. Barbier, M. Rattay, F. Saint-Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9(3), 315–317 (1997).
[CrossRef]

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. St. Andre, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9(2), 247–249 (1997).
[CrossRef]

Kimerling, L. C.

K. Wada, D. H. Ahn, D. R. Lim, J. Michel, and L. C. Kimerling, “Si microphotonics for optical interconnection,” Thin Solid Films 508(1-2), 418–421 (2006).
[CrossRef]

Koshiba, M.

Krupke, W. F.

Li, L.

Lim, D. R.

K. Wada, D. H. Ahn, D. R. Lim, J. Michel, and L. C. Kimerling, “Si microphotonics for optical interconnection,” Thin Solid Films 508(1-2), 418–421 (2006).
[CrossRef]

Madasamy, P.

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332 (2003).
[CrossRef]

Mafi, A.

McMahon, J. M.

Meissner, H. E.

Meissner, O. R.

Michel, J.

K. Wada, D. H. Ahn, D. R. Lim, J. Michel, and L. C. Kimerling, “Si microphotonics for optical interconnection,” Thin Solid Films 508(1-2), 418–421 (2006).
[CrossRef]

Misawa, A.

Mitchell, S. C.

Mizuhara, O.

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. St. Andre, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9(2), 247–249 (1997).
[CrossRef]

Moloney, J. V.

Morrell, M. M.

Mozjerin, I.

I. Mozjerin, A. A. Hardy, and S. Ruschin, “Effect of chip area limitation on gain and noise of erbium-doped waveguide amplifiers,” IEEE J. Sel. Top. Quantum Electron. 11(1), 204–210 (2005).
[CrossRef]

Murphy, E.

D. Barbier, M. Rattay, F. Saint-Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9(3), 315–317 (1997).
[CrossRef]

Paniccia, M. J.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

Park, H.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

Peyghambarian, N.

L. Li, A. Schülzgen, V. L. Temyanko, T. Qiu, M. M. Morrell, Q. Wang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Short-length microstructured phosphate glass fiber lasers with large mode areas,” Opt. Lett. 30(10), 1141–1143 (2005).
[CrossRef] [PubMed]

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332 (2003).
[CrossRef]

Polman, A.

A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–892 (2004).
[CrossRef]

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90(9), 4314–4320 (2001).
[CrossRef]

E. Snoeks, G. N. van den Hoven, and A. Polman, “Optimization of an Er-Doped Silica Glass Optical Waveguide Amplifier,” IEEE J. Quantum Electron. 32(9), 1680–1684 (1996).
[CrossRef]

Qiu, T.

Ramaswamy, R. V.

R. V. Ramaswamy and R. Srivastava, “Ion-Exchanged Glass Waveguides: A Review,” J. Lightwave Technol. 6(6), 984–1000 (1988).
[CrossRef]

Rattay, M.

D. Barbier, M. Rattay, F. Saint-Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9(3), 315–317 (1997).
[CrossRef]

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. St. Andre, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9(2), 247–249 (1997).
[CrossRef]

Rehouma, F.

F. Rehouma and K. E. Aiadi, “Glasses for ion-exchange technology,” Int. J. Commun. 1(6), 148–155 (2008).

Ruschin, S.

I. Mozjerin, A. A. Hardy, and S. Ruschin, “Effect of chip area limitation on gain and noise of erbium-doped waveguide amplifiers,” IEEE J. Sel. Top. Quantum Electron. 11(1), 204–210 (2005).
[CrossRef]

Saint-Andre, F.

D. Barbier, M. Rattay, F. Saint-Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9(3), 315–317 (1997).
[CrossRef]

Sander-Jochem, M. J. H.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8x10Gb/s DWDM transmission over 240km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

Schülzgen, A.

Shepherd, D. P.

Shi, W. Q.

Snoeks, E.

E. Snoeks, G. N. van den Hoven, and A. Polman, “Optimization of an Er-Doped Silica Glass Optical Waveguide Amplifier,” IEEE J. Quantum Electron. 32(9), 1680–1684 (1996).
[CrossRef]

Spiekman, L. H.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8x10Gb/s DWDM transmission over 240km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

Srivastava, R.

R. V. Ramaswamy and R. Srivastava, “Ion-Exchanged Glass Waveguides: A Review,” J. Lightwave Technol. 6(6), 984–1000 (1988).
[CrossRef]

St. Andre, F.

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. St. Andre, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9(2), 247–249 (1997).
[CrossRef]

Strohhöfer, C.

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90(9), 4314–4320 (2001).
[CrossRef]

Temyanko, V. L.

Toccafondo, V.

V. Donzella, S. Faralli, V. Toccafondo, and F. Di Pasquale, “Effect of Si-nanocluster to Er3+ coupling ratio in EDWAs longitudinally pumped by visible broad area lasers,” J. Lightwave Technol. 27(12), 3342–3350 (2008).
[CrossRef]

F. Di Pasquale, S. Faralli, and V. Toccafondo, “Er3+/Yb3+ co-doped silica waveguide amplifiers longitudinally pumped by broad area lasers,” IEEE Photon. Technol. Lett. 19(24), 1967–1969 (2007).
[CrossRef]

Trouillon, M.

D. Barbier, M. Rattay, F. Saint-Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9(3), 315–317 (1997).
[CrossRef]

Tzeng, L. D.

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. St. Andre, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9(2), 247–249 (1997).
[CrossRef]

van den Hoven, G. N.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8x10Gb/s DWDM transmission over 240km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

E. Snoeks, G. N. van den Hoven, and A. Polman, “Optimization of an Er-Doped Silica Glass Optical Waveguide Amplifier,” IEEE J. Quantum Electron. 32(9), 1680–1684 (1996).
[CrossRef]

van Dongen, T.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8x10Gb/s DWDM transmission over 240km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

van Veggel, F. C. J. M.

Wada, K.

K. Wada, D. H. Ahn, D. R. Lim, J. Michel, and L. C. Kimerling, “Si microphotonics for optical interconnection,” Thin Solid Films 508(1-2), 418–421 (2006).
[CrossRef]

Wang, Q.

Wiesenfeld, J. M.

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8x10Gb/s DWDM transmission over 240km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

F. Gardillou, L. Bastard, and J.-E. Broquin, “4.25 dB gain in a hybrid silicate/phosphate glasses optical amplifier made by wafer bonding and ion-exchange techniques,” Appl. Phys. Lett. 85(22), 5176–5178 (2004).
[CrossRef]

P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332 (2003).
[CrossRef]

IEEE J. Lightwave Technol. (1)

F. Di Pasquale and M. Federighi, “Modelling of Uniform and Pair- Induced Upconversion Mechanisms in High-Concentration Erbium-Doped Silica Waveguides,” IEEE J. Lightwave Technol. 13(9), 1858–1864 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Snoeks, G. N. van den Hoven, and A. Polman, “Optimization of an Er-Doped Silica Glass Optical Waveguide Amplifier,” IEEE J. Quantum Electron. 32(9), 1680–1684 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

I. Mozjerin, A. A. Hardy, and S. Ruschin, “Effect of chip area limitation on gain and noise of erbium-doped waveguide amplifiers,” IEEE J. Sel. Top. Quantum Electron. 11(1), 204–210 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

M. Federighi and F. Di Pasquale, “The Effect of Pair-Induced Energy Transfer on the Performance of Silica Waveguide Amplifiers with High Er3+/Yb3+ Concentrations,” IEEE Photon. Technol. Lett. 7(3), 303–305 (1995).
[CrossRef]

D. Barbier, M. Rattay, F. Saint-Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9(3), 315–317 (1997).
[CrossRef]

F. Di Pasquale, S. Faralli, and V. Toccafondo, “Er3+/Yb3+ co-doped silica waveguide amplifiers longitudinally pumped by broad area lasers,” IEEE Photon. Technol. Lett. 19(24), 1967–1969 (2007).
[CrossRef]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8x10Gb/s DWDM transmission over 240km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000).
[CrossRef]

J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. St. Andre, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9(2), 247–249 (1997).
[CrossRef]

Int. J. Commun. (1)

F. Rehouma and K. E. Aiadi, “Glasses for ion-exchange technology,” Int. J. Commun. 1(6), 148–155 (2008).

J. Appl. Phys. (1)

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90(9), 4314–4320 (2001).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (3)

Mater. Sci. Eng. B (1)

J. Grelin, E. Ghibaudo, and J. E. Broquin, “Study of deeply buried waveguides: A way towards 3D integration,” Mater. Sci. Eng. B 149(2), 185–189 (2008).
[CrossRef]

Opt. Lett. (2)

Thin Solid Films (1)

K. Wada, D. H. Ahn, D. R. Lim, J. Michel, and L. C. Kimerling, “Si microphotonics for optical interconnection,” Thin Solid Films 508(1-2), 418–421 (2006).
[CrossRef]

Other (5)

J. Jin, The Finite Element Method in Electromagnetics, 2nd edition, (A Wiley-Interscience Publication, John Wiley & Sons, INC. 2002).

D. Barbier, J. M. Delavaux, A. Kevorkian, P. Gastaldo, and J. M. Jouanno, “Yb/Er integrated optics amplifers on phosphate glass in single and double- pass configuration,” in Proceedings of Optical Fiber Communications (OFC), San Diego, CA, USA, March 1995.

E.J. Murphy, “Integrated optical circuits and components: design and applications,” CRC press, 1 edition (Aug 3 1999)

V. Donzella, S. Faralli, and F. Di Pasquale, “Effect of Si-nc to Er3+ coupling ratio and multimode resonant pumping on EDWAs performance,” 21st Annual LEOS Meeting, WV 5, Nov. 2008.

V. Toccafondo, S. Faralli and F. Di Pasquale, “Integrated Er3+/Yb3+ co-doped silica waveguide amplifiers longitudinally pumped by broad area lasers,” Paper JTha12 in Proceedings of Optical Fiber Communications (OFC), San Diego, CA, USA, Feb. 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic representation of an integrated array of EYDWAs exploiting the proposed technology and pumping mechanism. Passive waveguide is represented in blue while active waveguides are in red.

Fig. 2
Fig. 2

Contour plot over the amplifier transverse cross-section of refractive index profiles in the IE waveguides.

Fig. 3
Fig. 3

Contour plots over the amplifier transverse cross-section of output signal field distribution after 1mm of propagation (active core) (a), pump field distribution at the amplifier input (b) and after 1 mm propagation (multimode core) (c).

Fig. 4
Fig. 4

Amplifier Gain versus Input pump power

Fig. 5
Fig. 5

Amplifier Gain versus Device length for different input PP.

Fig. 6
Fig. 6

Microscope picture of the large passive waveguide (100μm) aligned with a small active waveguide (2.6μm) – top view.

Fig. 7
Fig. 7

Schematic longitudinal view of the tested structure and working principle of pumping scheme

Fig. 8
Fig. 8

Pumping of the device by Broad area laser. Guided green light is uniformly observed along the active waveguide

Fig. 9
Fig. 9

Residual pump power measured at the output pigtailed active waveguide.

Fig. 10
Fig. 10

ASE spectra (on 0.2 Resolution Bandwidth and arbitrary units) at the pigtailed output of the active waveguide using a pump power value of 2.5 W.

Tables (1)

Tables Icon

Table 1 Simulation parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ε s = ε R s + j [ n r λ s 2 π ( α s + σ E r 12 n 1 σ E r 21 n 2 ) ]
ε p = ε R p + j [ n r λ p 2 π ( α p + σ Y b 45 n 4 + σ E r 13 n 1 ) ]
n 1 t = W 12  n 1 R 13  n 1 + A 21  n 2 + W 21   n 2 + C up  n 2 2 C cr  n 1   n 5 = 0
n 2 t = W 12  n 1 A 21  n 2 W 21  n 2 + A 32  n 3 2 C up  n 2 2   = 0
n 1 + n 2 + n 3 = N Er
n 4 t = R 45  n 5 + A 54  n 5 + R 54   n 5 +  Ccr n n 5   = 0
n 4 + n 5 = N Yb
N A ( x , t ) = N 0 erfc ( x / W 0 ) W 0 = 2 D t
n ( x , y ) = { n g l a s s + Δ n erfc ( x / W 0 ) | y | < m / 2 n g l a s s + Δ n erfc ( x / W 0 ) erfc ( ( | y | m 2 ) / W 0 ) | y | > m / 2

Metrics