Abstract

A real-time system is developed that employs a CCD sensor for recording and a reflective high-resolution liquid crystal display for reconstructing of image plane digital holograms. Two types of light sources, namely, the coherent (laser) and white light (LED) are used for optical reconstructions of static and dynamic object wave fronts. As expected, white light reconstructions exhibit improved properties compared to the corresponding monochrome reconstructions. However, these improvements become substantial in cases in which digital holograms are preprocessed by applying the common algebraic operations such as subtraction.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography

Jianlin Zhao, Hongzhen Jiang, and Jianglei Di
Opt. Express 16(4) 2514-2519 (2008)

Recording and reconstructing holograms in the spectrum of a white-light source

F. Heiniger, F. Laeri, and T. Tschudi
Appl. Opt. 20(19) 3378-3381 (1981)

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
    [Crossref]
  2. T. Kreis and W. P. O. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36(8), 2357–2360 (1997).
    [Crossref]
  3. N. Demoli, J. Mestrović, and I. Sović, “Subtraction digital holography,” Appl. Opt. 42(5), 798–804 (2003).
    [Crossref] [PubMed]
  4. G. L. Chen, C. Y. Lin, M. K. Kuo, and C. C. Chang, “Numerical suppression of zero-order image in digital holography,” Opt. Express 15(14), 8851–8856 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-8851 .
    [Crossref] [PubMed]
  5. A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25(22), 1630–1632 (2000).
    [Crossref]
  6. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charriere, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23(12), 3177–3190 (2006).
    [Crossref]
  7. N. Demoli, D. Vukicevic, and M. Torzynski, “Dynamic digital holographic interferometry with three wavelengths,” Opt. Express 11(7), 767–774 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-7-767 .
    [Crossref] [PubMed]
  8. N. Demoli and I. Demoli, “Dynamic modal characterization of musical instruments using digital holography,” Opt. Express 13(13), 4812–4817 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-13-4812 .
    [Crossref] [PubMed]
  9. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45(15), 3456–3462 (2006).
    [Crossref] [PubMed]
  10. Y.-S. Choi and S.-J. Lee, “Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy,” Appl. Opt. 48(16), 2983–2990 (2009).
    [Crossref] [PubMed]
  11. N. Demoli and D. Vukicevic, “Detection of hidden stationary deformations of vibrating surfaces by use of time-averaged digital holographic interferometry,” Opt. Lett. 29(20), 2423–2425 (2004).
    [Crossref] [PubMed]
  12. A. Asundi and V. R. Singh, “Time-averaged in-line digital holographic interferometry for vibration analysis,” Appl. Opt. 45(11), 2391–2395 (2006).
    [Crossref] [PubMed]
  13. M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33(22), 2629–2631 (2008).
    [Crossref] [PubMed]
  14. M. Sutkowski and M. Kujawinska, “Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33(3), 191–201 (2000).
    [Crossref]
  15. N. Demoli, “Real-time monitoring of vibration fringe patterns by optical reconstruction of digital holograms: mode beating detection,” Opt. Express 14(6), 2117–2122 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-6-2117 .
    [Crossref] [PubMed]
  16. L. Rosen, “Focused-image holography with extended sources,” Appl. Phys. Lett. 9(9), 337–339 (1966).
    [Crossref]
  17. G. W. Stroke, “White-light reconstruction of holographic images using transmission holograms recorded with conventionally focused images and in-line background,” Phys. Lett. 23(5), 325–327 (1966).
    [Crossref]
  18. G. B. Brandt, “Image plane holography,” Appl. Opt. 8(7), 1421–1429 (1969).
    [Crossref] [PubMed]
  19. P. Hariharan, Optical Holography: principles, techniques, and applications (Cambridge University Press, 1996).
  20. A. Stern and B. Javidi, “Space-bandwidth conditions for efficient phase-shifting digital holographic microscopy,” J. Opt. Soc. Am. A 25(3), 736–741 (2008).
    [Crossref]
  21. N. Demoli, H. Halaq, K. Šariri, M. Torzynski, and D. Vukicevic, “Undersampled digital holography,” Opt. Express 17(18), 15842–15852 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-15842 .
    [Crossref] [PubMed]
  22. S. Suzuki, K. Sakaue, and K. Iwanaga, “Measurement of energy release rate and energy flux of rapidly bifurcating crack in Homalite 100 and Araldite B by high-speed holographic microscopy,” J. Mech. Phys. Solids 55(7), 1487–1512 (2007).
    [Crossref]
  23. M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19(7), 074006 (2008).
    [Crossref]
  24. T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-paralax holographic video display system,” Opt. Eng. 46(12), 125801 (2007).
    [Crossref]
  25. N. Demoli, D. Vukičević, and M. Torzynski, “Time-averaged holographic interferometry using subtraction digital holography,” Proc. SPIE 5457, 643–650 (2004).
    [Crossref]
  26. U. Schnars, and W. Jüptner, Digital Holography (Springer, 2005), Chap. 3.3.1.

2009 (2)

2008 (3)

2007 (3)

T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-paralax holographic video display system,” Opt. Eng. 46(12), 125801 (2007).
[Crossref]

S. Suzuki, K. Sakaue, and K. Iwanaga, “Measurement of energy release rate and energy flux of rapidly bifurcating crack in Homalite 100 and Araldite B by high-speed holographic microscopy,” J. Mech. Phys. Solids 55(7), 1487–1512 (2007).
[Crossref]

G. L. Chen, C. Y. Lin, M. K. Kuo, and C. C. Chang, “Numerical suppression of zero-order image in digital holography,” Opt. Express 15(14), 8851–8856 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-8851 .
[Crossref] [PubMed]

2006 (4)

2005 (1)

2004 (2)

N. Demoli and D. Vukicevic, “Detection of hidden stationary deformations of vibrating surfaces by use of time-averaged digital holographic interferometry,” Opt. Lett. 29(20), 2423–2425 (2004).
[Crossref] [PubMed]

N. Demoli, D. Vukičević, and M. Torzynski, “Time-averaged holographic interferometry using subtraction digital holography,” Proc. SPIE 5457, 643–650 (2004).
[Crossref]

2003 (2)

2002 (1)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

2000 (2)

M. Sutkowski and M. Kujawinska, “Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33(3), 191–201 (2000).
[Crossref]

A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25(22), 1630–1632 (2000).
[Crossref]

1997 (1)

T. Kreis and W. P. O. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36(8), 2357–2360 (1997).
[Crossref]

1969 (1)

1966 (2)

L. Rosen, “Focused-image holography with extended sources,” Appl. Phys. Lett. 9(9), 337–339 (1966).
[Crossref]

G. W. Stroke, “White-light reconstruction of holographic images using transmission holograms recorded with conventionally focused images and in-line background,” Phys. Lett. 23(5), 325–327 (1966).
[Crossref]

Arroyo, M. P.

M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19(7), 074006 (2008).
[Crossref]

Aspert, N.

Asundi, A.

Bourquin, S.

Brandt, G. B.

Chang, C. C.

Charriere, F.

Chen, G. L.

Choi, Y.-S.

Colomb, T.

Cuche, E.

Demoli, I.

Demoli, N.

N. Demoli, H. Halaq, K. Šariri, M. Torzynski, and D. Vukicevic, “Undersampled digital holography,” Opt. Express 17(18), 15842–15852 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-18-15842 .
[Crossref] [PubMed]

N. Demoli, “Real-time monitoring of vibration fringe patterns by optical reconstruction of digital holograms: mode beating detection,” Opt. Express 14(6), 2117–2122 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-6-2117 .
[Crossref] [PubMed]

N. Demoli and I. Demoli, “Dynamic modal characterization of musical instruments using digital holography,” Opt. Express 13(13), 4812–4817 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-13-4812 .
[Crossref] [PubMed]

N. Demoli and D. Vukicevic, “Detection of hidden stationary deformations of vibrating surfaces by use of time-averaged digital holographic interferometry,” Opt. Lett. 29(20), 2423–2425 (2004).
[Crossref] [PubMed]

N. Demoli, D. Vukičević, and M. Torzynski, “Time-averaged holographic interferometry using subtraction digital holography,” Proc. SPIE 5457, 643–650 (2004).
[Crossref]

N. Demoli, D. Vukicevic, and M. Torzynski, “Dynamic digital holographic interferometry with three wavelengths,” Opt. Express 11(7), 767–774 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-7-767 .
[Crossref] [PubMed]

N. Demoli, J. Mestrović, and I. Sović, “Subtraction digital holography,” Appl. Opt. 42(5), 798–804 (2003).
[Crossref] [PubMed]

Depeursinge, C.

Ferraro, P.

Finizio, A.

Gusev, M. E.

Halaq, H.

Iwanaga, K.

S. Suzuki, K. Sakaue, and K. Iwanaga, “Measurement of energy release rate and energy flux of rapidly bifurcating crack in Homalite 100 and Araldite B by high-speed holographic microscopy,” J. Mech. Phys. Solids 55(7), 1487–1512 (2007).
[Crossref]

Javidi, B.

Jüptner, W. P. O.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

T. Kreis and W. P. O. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36(8), 2357–2360 (1997).
[Crossref]

Kreis, T.

T. Kreis and W. P. O. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36(8), 2357–2360 (1997).
[Crossref]

Kühn, J.

Kujawinska, M.

M. Sutkowski and M. Kujawinska, “Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33(3), 191–201 (2000).
[Crossref]

Kuo, M. K.

Lee, S.-J.

Lin, C. Y.

Lobera, J.

M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19(7), 074006 (2008).
[Crossref]

Marian, A.

Marquet, P.

Massig, J. H.

Memmolo, P.

Mestrovic, J.

Miccio, L.

Montfort, F.

Okabe, G.

T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-paralax holographic video display system,” Opt. Eng. 46(12), 125801 (2007).
[Crossref]

Osten, W.

Paturzo, M.

Pedrini, G.

Rosen, L.

L. Rosen, “Focused-image holography with extended sources,” Appl. Phys. Lett. 9(9), 337–339 (1966).
[Crossref]

Sakaue, K.

S. Suzuki, K. Sakaue, and K. Iwanaga, “Measurement of energy release rate and energy flux of rapidly bifurcating crack in Homalite 100 and Araldite B by high-speed holographic microscopy,” J. Mech. Phys. Solids 55(7), 1487–1512 (2007).
[Crossref]

Šariri, K.

Schnars, U.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

Singh, V. R.

Sovic, I.

Stadelmaier, A.

Stern, A.

Stroke, G. W.

G. W. Stroke, “White-light reconstruction of holographic images using transmission holograms recorded with conventionally focused images and in-line background,” Phys. Lett. 23(5), 325–327 (1966).
[Crossref]

Sutkowski, M.

M. Sutkowski and M. Kujawinska, “Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33(3), 191–201 (2000).
[Crossref]

Suzuki, S.

S. Suzuki, K. Sakaue, and K. Iwanaga, “Measurement of energy release rate and energy flux of rapidly bifurcating crack in Homalite 100 and Araldite B by high-speed holographic microscopy,” J. Mech. Phys. Solids 55(7), 1487–1512 (2007).
[Crossref]

Torzynski, M.

Tulino, A.

Vukicevic, D.

Yamaguchi, T.

T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-paralax holographic video display system,” Opt. Eng. 46(12), 125801 (2007).
[Crossref]

Yoshikawa, H.

T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-paralax holographic video display system,” Opt. Eng. 46(12), 125801 (2007).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

L. Rosen, “Focused-image holography with extended sources,” Appl. Phys. Lett. 9(9), 337–339 (1966).
[Crossref]

J. Mech. Phys. Solids (1)

S. Suzuki, K. Sakaue, and K. Iwanaga, “Measurement of energy release rate and energy flux of rapidly bifurcating crack in Homalite 100 and Araldite B by high-speed holographic microscopy,” J. Mech. Phys. Solids 55(7), 1487–1512 (2007).
[Crossref]

J. Opt. Soc. Am. A (2)

Meas. Sci. Technol. (2)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[Crossref]

M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19(7), 074006 (2008).
[Crossref]

Opt. Eng. (2)

T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-paralax holographic video display system,” Opt. Eng. 46(12), 125801 (2007).
[Crossref]

T. Kreis and W. P. O. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36(8), 2357–2360 (1997).
[Crossref]

Opt. Express (5)

Opt. Lasers Eng. (1)

M. Sutkowski and M. Kujawinska, “Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33(3), 191–201 (2000).
[Crossref]

Opt. Lett. (3)

Phys. Lett. (1)

G. W. Stroke, “White-light reconstruction of holographic images using transmission holograms recorded with conventionally focused images and in-line background,” Phys. Lett. 23(5), 325–327 (1966).
[Crossref]

Proc. SPIE (1)

N. Demoli, D. Vukičević, and M. Torzynski, “Time-averaged holographic interferometry using subtraction digital holography,” Proc. SPIE 5457, 643–650 (2004).
[Crossref]

Other (2)

U. Schnars, and W. Jüptner, Digital Holography (Springer, 2005), Chap. 3.3.1.

P. Hariharan, Optical Holography: principles, techniques, and applications (Cambridge University Press, 1996).

Supplementary Material (2)

» Media 1: AVI (6742 KB)     
» Media 2: AVI (6742 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The LCOS modulation characteristics: (a) intensity and (b) phase.
Fig. 2
Fig. 2 The spectral characteristics of the sources: (a) laser (532 nm, | | = 375 M H z ) and (b) white light (LED, manufacturer: Lexman).
Fig. 3
Fig. 3 Recording setup: (ND) neutral density filter, (VBS) variable beam splitter, (CBS) cube beam splitter, (CL) collimating lens, (IL) imaging lens, (SF) spatial filter, (AP) aperture, (P) polarizer.
Fig. 4
Fig. 4 Reconstructing setup: (SF) spatial filter, (CL) collimating lens, (FM) flipping mirror, (ND) neutral density filter, (P) polarizer, (λ/2) half wave plate, (AP) aperture, (SAP) slit aperture.
Fig. 5
Fig. 5 Optical reconstructions of the USAF target from the single hologram: (a) laser and (b) LED.
Fig. 6
Fig. 6 The same as in Fig. 5, but for two subtracted single holograms.
Fig. 7
Fig. 7 The same as in Fig. 5, but for the reference and object recordings subtracted from the single hologram.
Fig. 8
Fig. 8 The real-time recordings of the two-dimensional MEMS vibrations: (a) laser reconstruction (Media 1) and (b) LED reconstruction (Media 2).

Metrics