Abstract

The conversion efficiency of an optical parametric oscillator is reduced by energy consumption during build-up of signal and idler intensities and due to back-conversion effects. By tailoring the pump pulse temporal shape, we are able to improve the conversion efficiency by minimizing build-up time and back-conversion. Simulations predict a significant improvement in 1064nm to 4000nm idler conversion by using a double-rectangular temporal shape rather than using a simple Gaussian pulse. Experimental results qualitatively verify the effect resulting in a 20% improvement of a rectangular pulse over a Gaussian pulse.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimal pump pulse shapes for optical parametric oscillators

Guillaume Aoust, Antoine Godard, Myriam Raybaut, Olivier Wang, Jean-Michel Melkonian, and Michel Lefebvre
J. Opt. Soc. Am. B 33(5) 842-849 (2016)

Pump duration optimization for optical parametric oscillators

Guillaume Aoust, Antoine Godard, Myriam Raybaut, Jean-Baptiste Dherbecourt, Guillaume Canat, and Michel Lefebvre
J. Opt. Soc. Am. B 31(12) 3113-3122 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).
  2. E. Hugonnot, J. Luce, N. Beck, and H. Cole, “Nd:glass regenerative amplifier with spatiotemporally shaped pulses for pumping an optical parametric chirped pulse amplification laser system,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper JTuC23.
  3. Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE JST QE 15(2), 385–392 (2009).
  4. A. V. Smith, R. J. Gehr, and M. S. Bowers, “Numerical models of broad-bandwidth nanosecond optical parametric oscillators,” J. Opt. Soc. Am. B 16(4), 609–619 (1999).
    [Crossref]
  5. S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
    [Crossref]
  6. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
    [Crossref]
  7. D. H. Titterton, J. A. C. Terry, and D. H. Thorne, “Development of a compact high-performance midwave infrared laser,” Proc. SPIE 3929, 14–24 (2000).
    [Crossref]
  8. M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, “Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators,” Opt. Lett. 24(17), 1227–1229 (1999).
    [Crossref]
  9. K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,” Opt. Express 14(23), 10996–11001 (2006).
    [Crossref] [PubMed]
  10. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength depenedent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
    [Crossref]

2009 (1)

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE JST QE 15(2), 385–392 (2009).

2008 (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength depenedent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

2006 (1)

2000 (1)

D. H. Titterton, J. A. C. Terry, and D. H. Thorne, “Development of a compact high-performance midwave infrared laser,” Proc. SPIE 3929, 14–24 (2000).
[Crossref]

1999 (2)

1997 (1)

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

1979 (1)

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
[Crossref]

Alam, S.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE JST QE 15(2), 385–392 (2009).

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength depenedent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

Bowers, M. S.

Brosnan, S. J.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
[Crossref]

Byer, R. L.

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
[Crossref]

Cai, S.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE JST QE 15(2), 385–392 (2009).

Chen, K. K.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE JST QE 15(2), 385–392 (2009).

Dominic, V.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength depenedent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength depenedent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Gehr, R. J.

Ghiringhelli, F.

Hickey, L. M. B.

Jiang, P.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE JST QE 15(2), 385–392 (2009).

Lin, D.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE JST QE 15(2), 385–392 (2009).

Malinowski, A.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE JST QE 15(2), 385–392 (2009).

K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,” Opt. Express 14(23), 10996–11001 (2006).
[Crossref] [PubMed]

Missey, M. J.

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

Powers, P. E.

Richardson, D. J.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE JST QE 15(2), 385–392 (2009).

K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,” Opt. Express 14(23), 10996–11001 (2006).
[Crossref] [PubMed]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength depenedent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

Schepler, K. L.

Shen, Y.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE JST QE 15(2), 385–392 (2009).

Smith, A. V.

Terry, J. A. C.

D. H. Titterton, J. A. C. Terry, and D. H. Thorne, “Development of a compact high-performance midwave infrared laser,” Proc. SPIE 3929, 14–24 (2000).
[Crossref]

Thorne, D. H.

D. H. Titterton, J. A. C. Terry, and D. H. Thorne, “Development of a compact high-performance midwave infrared laser,” Proc. SPIE 3929, 14–24 (2000).
[Crossref]

Titterton, D. H.

D. H. Titterton, J. A. C. Terry, and D. H. Thorne, “Development of a compact high-performance midwave infrared laser,” Proc. SPIE 3929, 14–24 (2000).
[Crossref]

Vu, K. T.

Wu, B.

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE JST QE 15(2), 385–392 (2009).

Zervas, M. N.

Appl. Phys. B (1)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength depenedent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[Crossref]

IEEE J. Quantum Electron. (2)

S. J. Brosnan and R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. 15(6), 415–431 (1979).
[Crossref]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33(10), 1663–1672 (1997).
[Crossref]

IEEE JST QE (1)

Y. Shen, S. Alam, K. K. Chen, D. Lin, S. Cai, B. Wu, P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based high-power optical parametric oscillator pumped Yb3+-doped fiber amplifier incorporates active pulse shaping,” IEEE JST QE 15(2), 385–392 (2009).

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

D. H. Titterton, J. A. C. Terry, and D. H. Thorne, “Development of a compact high-performance midwave infrared laser,” Proc. SPIE 3929, 14–24 (2000).
[Crossref]

Other (2)

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 1996).

E. Hugonnot, J. Luce, N. Beck, and H. Cole, “Nd:glass regenerative amplifier with spatiotemporally shaped pulses for pumping an optical parametric chirped pulse amplification laser system,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper JTuC23.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 OPO performance with a 60ns Gaussian pulse.
Fig. 2
Fig. 2 OPO performance with a rectangular pulse. (a) Idler steady-state efficiency. (b) Steady-state idler efficiency within the crystal for pump power of (A) 100W, (B) 150W and (C) 300W.
Fig. 3
Fig. 3 Temporal evolution of pump, signal, and idlers pulses: (a) rectangular pulse, (b) optimized double rectangular pulse.
Fig. 4
Fig. 4 OPO experimental results (a) Input pumps: Gaussian and rectangular. (b) Input and output OPO pulses in the case of rectangular pump pulse (c) OPO idler power curve for Gaussian and rectangular pulses. (d) Steady state idler conversion efficiency for rectangular pulse.

Tables (1)

Tables Icon

Table 1 Pump Pulse Shape Optimization (Rs=90%, Epump=65μJ)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I t h I 1 p h o t o n = [ cos h 2 ( Γ L ) e 2 α L R s ] N

Metrics