Abstract

We have suggested an electrically controlled multifrequency cloak with a single shell of ferroelectric material for the first time to the best of our knowledge. The theoretical and simulated results have demonstrated that this cloak with high-index ferroelectrics can reduce the total scattering cross section of the cloaked system at multiple frequencies. These cloaking frequencies of our cloak can be externally controlled since the dielectric constant of ferroelectrics is well tuned with the applied electric field. It may provide a potential way to design a tunable multifrequency cloak with considerable flexibility.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  4. G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonances,” Proc. R. Soc. A 462(2074), 3027–3059 (2006).
    [CrossRef]
  5. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
    [CrossRef] [PubMed]
  6. M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(3), 036603 (2007).
    [CrossRef] [PubMed]
  7. F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” N. J. Phys. 10(11), 115035 (2008).
    [CrossRef]
  8. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
    [CrossRef] [PubMed]
  9. P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-Line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008).
    [CrossRef]
  10. Y. Lai, H. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
    [CrossRef] [PubMed]
  11. Y. Gao, J. P. Huang, and K. W. Yu, “Multifrequency cloak with multishell by using transformation medium,” J. Appl. Phys. 105(12), 124505 (2009).
    [CrossRef]
  12. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
    [CrossRef] [PubMed]
  13. A. E. Serebryannikov and E. Ozbay, “Multifrequency invisibility and masking of cylindrical dielectric objects using double-positive and double-negative metamaterials,” J. Opt. A, Pure Appl. Opt. 11(11), 114020 (2009).
    [CrossRef]
  14. A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Non-ideal cloaking based on Fabry-Perot resonances in single-layer high-index,” Opt. Express 17(19), 16869–16876 (2009).
    [CrossRef] [PubMed]
  15. D. P. Gaillot, C. Croënne, and D. Lippens, “An all-dielectric route for terahertz cloaking,” Opt. Express 16(6), 3986–3992 (2008).
    [CrossRef] [PubMed]
  16. A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, “Ferroelectric materials for microwave tunable applications,” J. Electroceram. 11(1/2), 5–66 (2003).
    [CrossRef]
  17. K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
    [CrossRef] [PubMed]
  18. G. A. Smolensky, Ferroelectrics and Related Materials, (New York: Academic Press 1981).
  19. O. Vendik, Ferroelectrics at Microwave technology, (Moscow: Sov. Radio 1979).

2009 (6)

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

A. E. Serebryannikov and E. Ozbay, “Multifrequency invisibility and masking of cylindrical dielectric objects using double-positive and double-negative metamaterials,” J. Opt. A, Pure Appl. Opt. 11(11), 114020 (2009).
[CrossRef]

A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Non-ideal cloaking based on Fabry-Perot resonances in single-layer high-index,” Opt. Express 17(19), 16869–16876 (2009).
[CrossRef] [PubMed]

Y. Lai, H. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Y. Gao, J. P. Huang, and K. W. Yu, “Multifrequency cloak with multishell by using transformation medium,” J. Appl. Phys. 105(12), 124505 (2009).
[CrossRef]

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[CrossRef] [PubMed]

2008 (4)

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[CrossRef] [PubMed]

D. P. Gaillot, C. Croënne, and D. Lippens, “An all-dielectric route for terahertz cloaking,” Opt. Express 16(6), 3986–3992 (2008).
[CrossRef] [PubMed]

P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-Line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008).
[CrossRef]

F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” N. J. Phys. 10(11), 115035 (2008).
[CrossRef]

2007 (1)

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(3), 036603 (2007).
[CrossRef] [PubMed]

2006 (4)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonances,” Proc. R. Soc. A 462(2074), 3027–3059 (2006).
[CrossRef]

2005 (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

2003 (1)

A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, “Ferroelectric materials for microwave tunable applications,” J. Electroceram. 11(1/2), 5–66 (2003).
[CrossRef]

Alitalo, P.

P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-Line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008).
[CrossRef]

Alù, A.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[CrossRef] [PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(3), 036603 (2007).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Astafiev, K. F.

A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, “Ferroelectric materials for microwave tunable applications,” J. Electroceram. 11(1/2), 5–66 (2003).
[CrossRef]

Bilotti, F.

F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” N. J. Phys. 10(11), 115035 (2008).
[CrossRef]

Cabuz, A. I.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[CrossRef] [PubMed]

Cassagne, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[CrossRef] [PubMed]

Centeno, E.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[CrossRef] [PubMed]

Chan, C. T.

Y. Lai, H. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Chen, H.

Y. Lai, H. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Croënne, C.

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Edwards, B.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

Engheta, N.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[CrossRef] [PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(3), 036603 (2007).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Felbacq, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[CrossRef] [PubMed]

Gaillot, D. P.

Gao, Y.

Y. Gao, J. P. Huang, and K. W. Yu, “Multifrequency cloak with multishell by using transformation medium,” J. Appl. Phys. 105(12), 124505 (2009).
[CrossRef]

Guizal, B.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[CrossRef] [PubMed]

Huang, J. P.

Y. Gao, J. P. Huang, and K. W. Yu, “Multifrequency cloak with multishell by using transformation medium,” J. Appl. Phys. 105(12), 124505 (2009).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Jylhä, L.

P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-Line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008).
[CrossRef]

Lai, Y.

Y. Lai, H. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Lippens, D.

Luukkonen, O.

P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-Line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008).
[CrossRef]

Milton, G. W.

G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonances,” Proc. R. Soc. A 462(2074), 3027–3059 (2006).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Nicorovici, N. A.

G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonances,” Proc. R. Soc. A 462(2074), 3027–3059 (2006).
[CrossRef]

Ozbay, E.

A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Non-ideal cloaking based on Fabry-Perot resonances in single-layer high-index,” Opt. Express 17(19), 16869–16876 (2009).
[CrossRef] [PubMed]

A. E. Serebryannikov and E. Ozbay, “Multifrequency invisibility and masking of cylindrical dielectric objects using double-positive and double-negative metamaterials,” J. Opt. A, Pure Appl. Opt. 11(11), 114020 (2009).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Serebryannikov, A. E.

A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Non-ideal cloaking based on Fabry-Perot resonances in single-layer high-index,” Opt. Express 17(19), 16869–16876 (2009).
[CrossRef] [PubMed]

A. E. Serebryannikov and E. Ozbay, “Multifrequency invisibility and masking of cylindrical dielectric objects using double-positive and double-negative metamaterials,” J. Opt. A, Pure Appl. Opt. 11(11), 114020 (2009).
[CrossRef]

Setter, N.

A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, “Ferroelectric materials for microwave tunable applications,” J. Electroceram. 11(1/2), 5–66 (2003).
[CrossRef]

Sherman, V. O.

A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, “Ferroelectric materials for microwave tunable applications,” J. Electroceram. 11(1/2), 5–66 (2003).
[CrossRef]

Silveirinha, M. G.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(3), 036603 (2007).
[CrossRef] [PubMed]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Tagantsev, A. K.

A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, “Ferroelectric materials for microwave tunable applications,” J. Electroceram. 11(1/2), 5–66 (2003).
[CrossRef]

Tretyakov, S. A.

P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-Line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008).
[CrossRef]

Tricarico, S.

F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” N. J. Phys. 10(11), 115035 (2008).
[CrossRef]

Usik, P. V.

Vegni, L.

F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” N. J. Phys. 10(11), 115035 (2008).
[CrossRef]

Venermo, J.

P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-Line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008).
[CrossRef]

Venkatesh, J.

A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, “Ferroelectric materials for microwave tunable applications,” J. Electroceram. 11(1/2), 5–66 (2003).
[CrossRef]

Vynck, K.

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[CrossRef] [PubMed]

Yu, K. W.

Y. Gao, J. P. Huang, and K. W. Yu, “Multifrequency cloak with multishell by using transformation medium,” J. Appl. Phys. 105(12), 124505 (2009).
[CrossRef]

Zhang, Z.-Q.

Y. Lai, H. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

IEEE Trans. Antenn. Propag. (1)

P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-Line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008).
[CrossRef]

J. Appl. Phys. (1)

Y. Gao, J. P. Huang, and K. W. Yu, “Multifrequency cloak with multishell by using transformation medium,” J. Appl. Phys. 105(12), 124505 (2009).
[CrossRef]

J. Electroceram. (1)

A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, “Ferroelectric materials for microwave tunable applications,” J. Electroceram. 11(1/2), 5–66 (2003).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

A. E. Serebryannikov and E. Ozbay, “Multifrequency invisibility and masking of cylindrical dielectric objects using double-positive and double-negative metamaterials,” J. Opt. A, Pure Appl. Opt. 11(11), 114020 (2009).
[CrossRef]

N. J. Phys. (1)

F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” N. J. Phys. 10(11), 115035 (2008).
[CrossRef]

Opt. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(3), 036603 (2007).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

Y. Lai, H. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008).
[CrossRef] [PubMed]

K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[CrossRef] [PubMed]

Proc. R. Soc. A (1)

G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonances,” Proc. R. Soc. A 462(2074), 3027–3059 (2006).
[CrossRef]

Science (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Other (2)

G. A. Smolensky, Ferroelectrics and Related Materials, (New York: Academic Press 1981).

O. Vendik, Ferroelectrics at Microwave technology, (Moscow: Sov. Radio 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The dependence of the dielectric permittivity of BST(x = 0.5) on the applied electric field. The inset is schematic diagram of a cylindrical object covered with a ferroelectric shell.

Fig. 2
Fig. 2

(a) Contour plot of the variation of total scattering cross section Qs as a function of frequency and the applied electric field. (b)The total scattering cross section Qs as a function of frequency for three cases: No cover (green), with cover and zero applied electric field (red), with cover and an applied electric field of 70 V/μm (blue).

Fig. 3
Fig. 3

The modulus of the axial electric field for the three cases in Fig. 2(b) with reasonable loss at two frequencies: (a) ac/λ = 0.14, (b) ac/λ = 0.16.

Fig. 4
Fig. 4

The modulus of the total magnetic field in the orthogonal plane of polarization for the three cases in Fig. 2 (b) with reasonable loss at two frequencies: (a) ac/λ = 0.14, (b) ac/λ = 0.16.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

c n T M = U n T M U n T M + i V n T M ,
Q s = 4 k 0 n ( 2 δ n , 0 ) | c n T M | 2 .
U 0 T M = | 1 2 π k c a cos ( k c a π / 4 ) 2 π k c a sin ( k c a π / 4 ) 0 k 2 a / 2 k c 2 π k c a cos ( k c a 3 π / 4 ) k c 2 π k c a sin ( k c a 3 π / 4 ) 0 0 2 π k c a c cos ( k c a c π / 4 ) 2 π k c a c sin ( k c a c π / 4 ) 1 0 k c 2 π k c a c cos ( k c a c 3 π / 4 ) k c 2 π k c a c sin ( k c a c 3 π / 4 ) k o 2 a c / 2 |
= 4 k c 2 2 π sin [ k c ( a c a ) ] + o ( k 0 a ) 2 .
λ = 2 ( a c a ) m ε c .
E 0.8 10 5 1 x n 1 ( 2 + n ) ε ( 0 ) 3 / 2 (V/ μm ) , x < 0.7

Metrics