Abstract

We have fabricated miniature implantable fluorescence sensors for continuous fluorescence sensing applications in living subjects. These monolithically integrated GaAs-based sensors incorporate a 675nm vertical-cavity surface-emitting laser (VCSEL), a GaAs PIN photodiode, and a fluorescence emission filter. We demonstrate high detection sensitivity for Cy5.5 far-red dye (50 nanoMolar) in living tissue, limited by the intrinsic background autofluorescence. These low cost, sensitive and scalable sensors are promising for long-term continuous monitoring of molecular dynamics for biomedical studies in freely moving animals.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17(5), 545–580 (2003).
    [CrossRef] [PubMed]
  2. M. S. Gee, R. Upadhyay, H. Bergquist, H. Alencar, F. Reynolds, M. Maricevich, R. Weissleder, L. Josephson, and U. Mahmood, “Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy,” Radiology 248(3), 925–935 (2008).
    [CrossRef] [PubMed]
  3. J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
    [CrossRef] [PubMed]
  4. O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson, and M. Zhang, “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Res. 69(15), 6200–6207 (2009).
    [CrossRef] [PubMed]
  5. M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE Trans. Biomed. Circuit Syst. 2(3), 193–203 (2008).
    [CrossRef]
  6. D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009).
    [CrossRef] [PubMed]
  7. J. A. Chediak, Z. Luo, J. Seo, N. Cheung, L. P. Lee, and T. D. Sands, “Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems,” Sens. Actuators A Phys. 111(1), 1–7 (2004).
    [CrossRef]
  8. T. Kamei and T. Wada, “Contact-lens type of micromachined hydrogenated amorphous Si fluorescence detector coupled with microfluidic electrophoresis devices,” Appl. Phys. Lett. 89(11), 114101 (2006).
    [CrossRef]
  9. L. Luan, R. D. Evans, N. M. Jokerst, and R. B. Fair, “Integrated Optical Sensor in a Digital Microfluidic Platform,” IEEE Sens. J. 8(5), 628–635 (2008).
    [CrossRef]
  10. L. Martinelli, H. Choumane, K.-N. Ha, G. Sagarzazu, C. Goutel, C. Weisbuch, T. Gacoin, and H. Benisty, “Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays: Role of a high rejection of excitation light,” Appl. Phys. Lett. 91(8), 083901–083903 (2007).
    [CrossRef]
  11. D. Starikov, F. Benkabou, N. Medelci, and A. Bensaoula, “Integrated multi-wavelength fluorescence sensors,” in Proceedings of IEEE Sensors for Industry Conference, (Institute of Electrical and Electronics Engineers, 2002), pp. 15–18.
  12. E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., ““Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
    [CrossRef]
  13. D. C. Ng, T. Tokuda, A. Yamamoto, M. Matsuo, M. Nunoshita, H. Tamura, Y. Ishikawa, S. Shiosaka, and J. Ohta, “On-chip biofluorescence imaging inside a brain tissue phantom using a CMOS image sensor for in vivo brain imaging verification,” Sens. Actuators B Chem. 119(1), 262–274 (2006).
    [CrossRef]
  14. B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
    [CrossRef] [PubMed]
  15. J. Thomas, A. Ambroise, K. Birchfield, W. Cai, C. Sandmann, S. Singh, K. Weidemaier, and J. B. Pitner, “Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites,” Proc. SPIE 6078, 60781–60789 (2006).
    [CrossRef]
  16. O. Levi, T. T. Lee, M. M. Lee, S. J. Smith, and J. S. Harris, “Integrated semiconductor optical sensors for cellular and neural imaging,” Appl. Opt. 46(10), 1881–1889 (2007).
    [CrossRef] [PubMed]
  17. M. K. Hibbs-Brenner, K. L. Johnson, and M. Bendett, “VCSEL technology for medical diagnostics and therapeutics,” Proc. SPIE 7180, 71800–71810 (2009).
    [CrossRef]
  18. K. D. Choquette, A. Giannopoulos, A. M. Kasten, C. Long, and C. Chen, “2-Dimensional Integrated VCSEL and PiN Photodetector Arrays for a Bidirectional Optical Links,” in IEEE Aerospace Conference, (Institute of Electrical and Electronics Engineers, 2007), pp. 1–7.
  19. G. A. Keeler, D. K. Serkland, K. M. Geib, J. F. Klem, and G. M. Peake, “In situ optical time-domain reflectometry (OTDR) for VCSEL-based communication systems,” Proc. SPIE 6132, 61320A (2006).
    [CrossRef]
  20. E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing,” IEEE J. Quantum Electron. 40(5), 491–498 (2004).
    [CrossRef]
  21. P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
    [CrossRef] [PubMed]
  22. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
    [CrossRef] [PubMed]
  23. X. Shu, A. Royant, M. Z. Lin, T. A. Aguilera, V. Lev-Ram, P. A. Steinbach, and R. Y. Tsien, “Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome,” Science 324(5928), 804–807 (2009).
    [CrossRef] [PubMed]
  24. M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
    [CrossRef] [PubMed]
  25. E. M. Sevick-Muraca and J. C. Rasmussen, “Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine,” J. Biomed. Opt. 13(4), 041303–041316 (2008).
    [CrossRef] [PubMed]
  26. T. D. O'Sullivan, E. Munro, A. de la Zerda, N. Parashurama, R. Teed, Z. Walls, O. Levi, S. S. Gambhir, and J. S. Harris, “Implantable optical biosensor for in vivo molecular imaging,” Proc. SPIE 7173, 717309 (2009).
    [CrossRef]
  27. M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
    [CrossRef] [PubMed]
  28. T. D. O'Sullivan, A. Wechselberger, O. Levi, and J. S. Harris, “Compact Semiconductor Bioluminescence Bio-sensors,” in Frontiers in Optics / Laser Science, Technical Digest (CD) (Optical Society of America, 2007), paper JMD5.
  29. E. Thrush, O. Levi, K. Wang, M. Wistey, J. S. Harris, and S. J. Smith, “Integrated semiconductor fluorescent detection system for biochip and biomedical applications,” Proc. SPIE 4626, 289–297 (2002).
    [CrossRef]
  30. W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
    [CrossRef]
  31. J.-H. Kim, D. H. Lim, and G. M. Yang, “Selective etching of AlGaAs/GaAs structures using the solutions of citric acid/H2O2 and de-ionized H2O/buffered oxide etch,” J. Vac. Sci. Technol. B 16(2), 558–560 (1998).
    [CrossRef]
  32. K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
    [CrossRef]
  33. T. D. O'Sullivan, E. Munro, C. Conca, N. Parashurama, A. de la Zerda, S. S. Gambhir, J. S. Harris, and O. Levi, “Near-Infrared in vivo Fluorescence Sensor with Integrated Dielectric Emission Filter,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWA49.
  34. T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, J. B. Doucet, P. Dubreuil, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
    [CrossRef]

2009 (5)

O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson, and M. Zhang, “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Res. 69(15), 6200–6207 (2009).
[CrossRef] [PubMed]

D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009).
[CrossRef] [PubMed]

M. K. Hibbs-Brenner, K. L. Johnson, and M. Bendett, “VCSEL technology for medical diagnostics and therapeutics,” Proc. SPIE 7180, 71800–71810 (2009).
[CrossRef]

X. Shu, A. Royant, M. Z. Lin, T. A. Aguilera, V. Lev-Ram, P. A. Steinbach, and R. Y. Tsien, “Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome,” Science 324(5928), 804–807 (2009).
[CrossRef] [PubMed]

T. D. O'Sullivan, E. Munro, A. de la Zerda, N. Parashurama, R. Teed, Z. Walls, O. Levi, S. S. Gambhir, and J. S. Harris, “Implantable optical biosensor for in vivo molecular imaging,” Proc. SPIE 7173, 717309 (2009).
[CrossRef]

2008 (5)

E. M. Sevick-Muraca and J. C. Rasmussen, “Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine,” J. Biomed. Opt. 13(4), 041303–041316 (2008).
[CrossRef] [PubMed]

L. Luan, R. D. Evans, N. M. Jokerst, and R. B. Fair, “Integrated Optical Sensor in a Digital Microfluidic Platform,” IEEE Sens. J. 8(5), 628–635 (2008).
[CrossRef]

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE Trans. Biomed. Circuit Syst. 2(3), 193–203 (2008).
[CrossRef]

M. S. Gee, R. Upadhyay, H. Bergquist, H. Alencar, F. Reynolds, M. Maricevich, R. Weissleder, L. Josephson, and U. Mahmood, “Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy,” Radiology 248(3), 925–935 (2008).
[CrossRef] [PubMed]

2007 (4)

L. Martinelli, H. Choumane, K.-N. Ha, G. Sagarzazu, C. Goutel, C. Weisbuch, T. Gacoin, and H. Benisty, “Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays: Role of a high rejection of excitation light,” Appl. Phys. Lett. 91(8), 083901–083903 (2007).
[CrossRef]

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[CrossRef] [PubMed]

O. Levi, T. T. Lee, M. M. Lee, S. J. Smith, and J. S. Harris, “Integrated semiconductor optical sensors for cellular and neural imaging,” Appl. Opt. 46(10), 1881–1889 (2007).
[CrossRef] [PubMed]

2006 (4)

D. C. Ng, T. Tokuda, A. Yamamoto, M. Matsuo, M. Nunoshita, H. Tamura, Y. Ishikawa, S. Shiosaka, and J. Ohta, “On-chip biofluorescence imaging inside a brain tissue phantom using a CMOS image sensor for in vivo brain imaging verification,” Sens. Actuators B Chem. 119(1), 262–274 (2006).
[CrossRef]

J. Thomas, A. Ambroise, K. Birchfield, W. Cai, C. Sandmann, S. Singh, K. Weidemaier, and J. B. Pitner, “Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites,” Proc. SPIE 6078, 60781–60789 (2006).
[CrossRef]

G. A. Keeler, D. K. Serkland, K. M. Geib, J. F. Klem, and G. M. Peake, “In situ optical time-domain reflectometry (OTDR) for VCSEL-based communication systems,” Proc. SPIE 6132, 61320A (2006).
[CrossRef]

T. Kamei and T. Wada, “Contact-lens type of micromachined hydrogenated amorphous Si fluorescence detector coupled with microfluidic electrophoresis devices,” Appl. Phys. Lett. 89(11), 114101 (2006).
[CrossRef]

2005 (2)

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., ““Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, J. B. Doucet, P. Dubreuil, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

2004 (2)

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing,” IEEE J. Quantum Electron. 40(5), 491–498 (2004).
[CrossRef]

J. A. Chediak, Z. Luo, J. Seo, N. Cheung, L. P. Lee, and T. D. Sands, “Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems,” Sens. Actuators A Phys. 111(1), 1–7 (2004).
[CrossRef]

2003 (3)

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17(5), 545–580 (2003).
[CrossRef] [PubMed]

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[CrossRef] [PubMed]

2002 (1)

E. Thrush, O. Levi, K. Wang, M. Wistey, J. S. Harris, and S. J. Smith, “Integrated semiconductor fluorescent detection system for biochip and biomedical applications,” Proc. SPIE 4626, 289–297 (2002).
[CrossRef]

2000 (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[CrossRef] [PubMed]

1998 (1)

J.-H. Kim, D. H. Lim, and G. M. Yang, “Selective etching of AlGaAs/GaAs structures using the solutions of citric acid/H2O2 and de-ionized H2O/buffered oxide etch,” J. Vac. Sci. Technol. B 16(2), 558–560 (1998).
[CrossRef]

1997 (2)

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[CrossRef]

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
[CrossRef]

Abshire, P.

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[CrossRef] [PubMed]

Aguilera, T. A.

X. Shu, A. Royant, M. Z. Lin, T. A. Aguilera, V. Lev-Ram, P. A. Steinbach, and R. Y. Tsien, “Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome,” Science 324(5928), 804–807 (2009).
[CrossRef] [PubMed]

Alencar, H.

M. S. Gee, R. Upadhyay, H. Bergquist, H. Alencar, F. Reynolds, M. Maricevich, R. Weissleder, L. Josephson, and U. Mahmood, “Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy,” Radiology 248(3), 925–935 (2008).
[CrossRef] [PubMed]

Almuneau, G.

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, J. B. Doucet, P. Dubreuil, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

Amat, C.

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, J. B. Doucet, P. Dubreuil, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

Ambroise, A.

J. Thomas, A. Ambroise, K. Birchfield, W. Cai, C. Sandmann, S. Singh, K. Weidemaier, and J. B. Pitner, “Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites,” Proc. SPIE 6078, 60781–60789 (2006).
[CrossRef]

Ashby, C. I. H.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[CrossRef]

Bahrami, S. B.

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Bardinal, V.

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, J. B. Doucet, P. Dubreuil, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

Barretto, R. P. J.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Beiderman, M.

M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE Trans. Biomed. Circuit Syst. 2(3), 193–203 (2008).
[CrossRef]

Bendett, M.

M. K. Hibbs-Brenner, K. L. Johnson, and M. Bendett, “VCSEL technology for medical diagnostics and therapeutics,” Proc. SPIE 7180, 71800–71810 (2009).
[CrossRef]

Benisty, H.

L. Martinelli, H. Choumane, K.-N. Ha, G. Sagarzazu, C. Goutel, C. Weisbuch, T. Gacoin, and H. Benisty, “Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays: Role of a high rejection of excitation light,” Appl. Phys. Lett. 91(8), 083901–083903 (2007).
[CrossRef]

Bergquist, H.

M. S. Gee, R. Upadhyay, H. Bergquist, H. Alencar, F. Reynolds, M. Maricevich, R. Weissleder, L. Josephson, and U. Mahmood, “Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy,” Radiology 248(3), 925–935 (2008).
[CrossRef] [PubMed]

Bhattarai, N.

O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson, and M. Zhang, “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Res. 69(15), 6200–6207 (2009).
[CrossRef] [PubMed]

Birchfield, K.

J. Thomas, A. Ambroise, K. Birchfield, W. Cai, C. Sandmann, S. Singh, K. Weidemaier, and J. B. Pitner, “Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites,” Proc. SPIE 6078, 60781–60789 (2006).
[CrossRef]

Blum, O.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[CrossRef]

Brennan, D.

D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009).
[CrossRef] [PubMed]

Bringer, C.

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, J. B. Doucet, P. Dubreuil, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

Burns, L. D.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Butler, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[CrossRef] [PubMed]

Cai, W.

J. Thomas, A. Ambroise, K. Birchfield, W. Cai, C. Sandmann, S. Singh, K. Weidemaier, and J. B. Pitner, “Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites,” Proc. SPIE 6078, 60781–60789 (2006).
[CrossRef]

Camps, T.

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, J. B. Doucet, P. Dubreuil, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

Carey, G.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing,” IEEE J. Quantum Electron. 40(5), 491–498 (2004).
[CrossRef]

Cerussi, A.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[CrossRef] [PubMed]

Chediak, J. A.

J. A. Chediak, Z. Luo, J. Seo, N. Cheung, L. P. Lee, and T. D. Sands, “Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems,” Sens. Actuators A Phys. 111(1), 1–7 (2004).
[CrossRef]

Cheung, N.

J. A. Chediak, Z. Luo, J. Seo, N. Cheung, L. P. Lee, and T. D. Sands, “Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems,” Sens. Actuators A Phys. 111(1), 1–7 (2004).
[CrossRef]

Choquette, K. D.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[CrossRef]

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
[CrossRef]

Choumane, H.

L. Martinelli, H. Choumane, K.-N. Ha, G. Sagarzazu, C. Goutel, C. Weisbuch, T. Gacoin, and H. Benisty, “Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays: Role of a high rejection of excitation light,” Appl. Phys. Lett. 91(8), 083901–083903 (2007).
[CrossRef]

Chow, W. W.

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
[CrossRef]

Cocker, E. D.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Comelli, D.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[CrossRef] [PubMed]

Cook, L. J.

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., ““Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing,” IEEE J. Quantum Electron. 40(5), 491–498 (2004).
[CrossRef]

Corbett, B.

D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009).
[CrossRef] [PubMed]

Crawford, M. H.

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
[CrossRef]

Cubeddu, R.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[CrossRef] [PubMed]

Dandin, M.

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[CrossRef] [PubMed]

Daran, E.

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, J. B. Doucet, P. Dubreuil, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

de la Zerda, A.

T. D. O'Sullivan, E. Munro, A. de la Zerda, N. Parashurama, R. Teed, Z. Walls, O. Levi, S. S. Gambhir, and J. S. Harris, “Implantable optical biosensor for in vivo molecular imaging,” Proc. SPIE 7173, 717309 (2009).
[CrossRef]

Deich, J.

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., ““Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing,” IEEE J. Quantum Electron. 40(5), 491–498 (2004).
[CrossRef]

Doucet, J. B.

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, J. B. Doucet, P. Dubreuil, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

Du, K.

O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson, and M. Zhang, “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Res. 69(15), 6200–6207 (2009).
[CrossRef] [PubMed]

Dubreuil, P.

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, J. B. Doucet, P. Dubreuil, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

Ellenbogen, R. G.

O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson, and M. Zhang, “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Res. 69(15), 6200–6207 (2009).
[CrossRef] [PubMed]

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[CrossRef] [PubMed]

Evans, R. D.

L. Luan, R. D. Evans, N. M. Jokerst, and R. B. Fair, “Integrated Optical Sensor in a Digital Microfluidic Platform,” IEEE Sens. J. 8(5), 628–635 (2008).
[CrossRef]

Fair, R. B.

L. Luan, R. D. Evans, N. M. Jokerst, and R. B. Fair, “Integrated Optical Sensor in a Digital Microfluidic Platform,” IEEE Sens. J. 8(5), 628–635 (2008).
[CrossRef]

Fang, C.

O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson, and M. Zhang, “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Res. 69(15), 6200–6207 (2009).
[CrossRef] [PubMed]

Fish, A.

M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE Trans. Biomed. Circuit Syst. 2(3), 193–203 (2008).
[CrossRef]

Flusberg, B. A.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Follstaedt, D. M.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[CrossRef]

Fontaine, C.

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, J. B. Doucet, P. Dubreuil, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

Frangioni, J. V.

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
[CrossRef] [PubMed]

Gabikian, P.

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Gacoin, T.

L. Martinelli, H. Choumane, K.-N. Ha, G. Sagarzazu, C. Goutel, C. Weisbuch, T. Gacoin, and H. Benisty, “Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays: Role of a high rejection of excitation light,” Appl. Phys. Lett. 91(8), 083901–083903 (2007).
[CrossRef]

Galvin, P.

D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009).
[CrossRef] [PubMed]

Gambhir, S. S.

T. D. O'Sullivan, E. Munro, A. de la Zerda, N. Parashurama, R. Teed, Z. Walls, O. Levi, S. S. Gambhir, and J. S. Harris, “Implantable optical biosensor for in vivo molecular imaging,” Proc. SPIE 7173, 717309 (2009).
[CrossRef]

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17(5), 545–580 (2003).
[CrossRef] [PubMed]

Gee, M. S.

M. S. Gee, R. Upadhyay, H. Bergquist, H. Alencar, F. Reynolds, M. Maricevich, R. Weissleder, L. Josephson, and U. Mahmood, “Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy,” Radiology 248(3), 925–935 (2008).
[CrossRef] [PubMed]

Geib, K. M.

G. A. Keeler, D. K. Serkland, K. M. Geib, J. F. Klem, and G. M. Peake, “In situ optical time-domain reflectometry (OTDR) for VCSEL-based communication systems,” Proc. SPIE 6132, 61320A (2006).
[CrossRef]

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[CrossRef]

Goutel, C.

L. Martinelli, H. Choumane, K.-N. Ha, G. Sagarzazu, C. Goutel, C. Weisbuch, T. Gacoin, and H. Benisty, “Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays: Role of a high rejection of excitation light,” Appl. Phys. Lett. 91(8), 083901–083903 (2007).
[CrossRef]

Grady, W. M.

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Greenberg, N. M.

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Gunn, J.

O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson, and M. Zhang, “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Res. 69(15), 6200–6207 (2009).
[CrossRef] [PubMed]

Ha, K.-N.

L. Martinelli, H. Choumane, K.-N. Ha, G. Sagarzazu, C. Goutel, C. Weisbuch, T. Gacoin, and H. Benisty, “Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays: Role of a high rejection of excitation light,” Appl. Phys. Lett. 91(8), 083901–083903 (2007).
[CrossRef]

Ha, W.

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing,” IEEE J. Quantum Electron. 40(5), 491–498 (2004).
[CrossRef]

Hackman, R. C.

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Hadley, G. R.

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
[CrossRef]

Hammons, B. E.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[CrossRef]

Hansen, S. J.

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Harris, J. S.

T. D. O'Sullivan, E. Munro, A. de la Zerda, N. Parashurama, R. Teed, Z. Walls, O. Levi, S. S. Gambhir, and J. S. Harris, “Implantable optical biosensor for in vivo molecular imaging,” Proc. SPIE 7173, 717309 (2009).
[CrossRef]

O. Levi, T. T. Lee, M. M. Lee, S. J. Smith, and J. S. Harris, “Integrated semiconductor optical sensors for cellular and neural imaging,” Appl. Opt. 46(10), 1881–1889 (2007).
[CrossRef] [PubMed]

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., ““Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing,” IEEE J. Quantum Electron. 40(5), 491–498 (2004).
[CrossRef]

E. Thrush, O. Levi, K. Wang, M. Wistey, J. S. Harris, and S. J. Smith, “Integrated semiconductor fluorescent detection system for biochip and biomedical applications,” Proc. SPIE 4626, 289–297 (2002).
[CrossRef]

Hibbs-Brenner, M. K.

M. K. Hibbs-Brenner, K. L. Johnson, and M. Bendett, “VCSEL technology for medical diagnostics and therapeutics,” Proc. SPIE 7180, 71800–71810 (2009).
[CrossRef]

Hou, H. Q.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[CrossRef]

Hull, R.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[CrossRef]

Ishikawa, Y.

D. C. Ng, T. Tokuda, A. Yamamoto, M. Matsuo, M. Nunoshita, H. Tamura, Y. Ishikawa, S. Shiosaka, and J. Ohta, “On-chip biofluorescence imaging inside a brain tissue phantom using a CMOS image sensor for in vivo brain imaging verification,” Sens. Actuators B Chem. 119(1), 262–274 (2006).
[CrossRef]

Johnson, K. L.

M. K. Hibbs-Brenner, K. L. Johnson, and M. Bendett, “VCSEL technology for medical diagnostics and therapeutics,” Proc. SPIE 7180, 71800–71810 (2009).
[CrossRef]

Jokerst, N. M.

L. Luan, R. D. Evans, N. M. Jokerst, and R. B. Fair, “Integrated Optical Sensor in a Digital Microfluidic Platform,” IEEE Sens. J. 8(5), 628–635 (2008).
[CrossRef]

Josephson, L.

M. S. Gee, R. Upadhyay, H. Bergquist, H. Alencar, F. Reynolds, M. Maricevich, R. Weissleder, L. Josephson, and U. Mahmood, “Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy,” Radiology 248(3), 925–935 (2008).
[CrossRef] [PubMed]

Jullien, G. A.

M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE Trans. Biomed. Circuit Syst. 2(3), 193–203 (2008).
[CrossRef]

Jung, J. C.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Justice, J.

D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009).
[CrossRef] [PubMed]

Kamei, T.

T. Kamei and T. Wada, “Contact-lens type of micromachined hydrogenated amorphous Si fluorescence detector coupled with microfluidic electrophoresis devices,” Appl. Phys. Lett. 89(11), 114101 (2006).
[CrossRef]

Keeler, G. A.

G. A. Keeler, D. K. Serkland, K. M. Geib, J. F. Klem, and G. M. Peake, “In situ optical time-domain reflectometry (OTDR) for VCSEL-based communication systems,” Proc. SPIE 6132, 61320A (2006).
[CrossRef]

Kievit, F.

O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson, and M. Zhang, “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Res. 69(15), 6200–6207 (2009).
[CrossRef] [PubMed]

Kim, J.-H.

J.-H. Kim, D. H. Lim, and G. M. Yang, “Selective etching of AlGaAs/GaAs structures using the solutions of citric acid/H2O2 and de-ionized H2O/buffered oxide etch,” J. Vac. Sci. Technol. B 16(2), 558–560 (1998).
[CrossRef]

Klem, J. F.

G. A. Keeler, D. K. Serkland, K. M. Geib, J. F. Klem, and G. M. Peake, “In situ optical time-domain reflectometry (OTDR) for VCSEL-based communication systems,” Proc. SPIE 6132, 61320A (2006).
[CrossRef]

Ko, T. H.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Kurtz, A.

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., ““Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

Kusuma, Y.

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Kwok, D.

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[CrossRef] [PubMed]

Lear, K. L.

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
[CrossRef]

Lee, D.

O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson, and M. Zhang, “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Res. 69(15), 6200–6207 (2009).
[CrossRef] [PubMed]

Lee, L. P.

J. A. Chediak, Z. Luo, J. Seo, N. Cheung, L. P. Lee, and T. D. Sands, “Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems,” Sens. Actuators A Phys. 111(1), 1–7 (2004).
[CrossRef]

Lee, M. M.

Lee, T. T.

Levi, O.

T. D. O'Sullivan, E. Munro, A. de la Zerda, N. Parashurama, R. Teed, Z. Walls, O. Levi, S. S. Gambhir, and J. S. Harris, “Implantable optical biosensor for in vivo molecular imaging,” Proc. SPIE 7173, 717309 (2009).
[CrossRef]

O. Levi, T. T. Lee, M. M. Lee, S. J. Smith, and J. S. Harris, “Integrated semiconductor optical sensors for cellular and neural imaging,” Appl. Opt. 46(10), 1881–1889 (2007).
[CrossRef] [PubMed]

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., ““Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing,” IEEE J. Quantum Electron. 40(5), 491–498 (2004).
[CrossRef]

E. Thrush, O. Levi, K. Wang, M. Wistey, J. S. Harris, and S. J. Smith, “Integrated semiconductor fluorescent detection system for biochip and biomedical applications,” Proc. SPIE 4626, 289–297 (2002).
[CrossRef]

Lev-Ram, V.

X. Shu, A. Royant, M. Z. Lin, T. A. Aguilera, V. Lev-Ram, P. A. Steinbach, and R. Y. Tsien, “Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome,” Science 324(5928), 804–807 (2009).
[CrossRef] [PubMed]

Lim, D. H.

J.-H. Kim, D. H. Lim, and G. M. Yang, “Selective etching of AlGaAs/GaAs structures using the solutions of citric acid/H2O2 and de-ionized H2O/buffered oxide etch,” J. Vac. Sci. Technol. B 16(2), 558–560 (1998).
[CrossRef]

Lin, M. Z.

X. Shu, A. Royant, M. Z. Lin, T. A. Aguilera, V. Lev-Ram, P. A. Steinbach, and R. Y. Tsien, “Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome,” Science 324(5928), 804–807 (2009).
[CrossRef] [PubMed]

Luan, L.

L. Luan, R. D. Evans, N. M. Jokerst, and R. B. Fair, “Integrated Optical Sensor in a Digital Microfluidic Platform,” IEEE Sens. J. 8(5), 628–635 (2008).
[CrossRef]

Luo, Z.

J. A. Chediak, Z. Luo, J. Seo, N. Cheung, L. P. Lee, and T. D. Sands, “Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems,” Sens. Actuators A Phys. 111(1), 1–7 (2004).
[CrossRef]

Mahmood, U.

M. S. Gee, R. Upadhyay, H. Bergquist, H. Alencar, F. Reynolds, M. Maricevich, R. Weissleder, L. Josephson, and U. Mahmood, “Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy,” Radiology 248(3), 925–935 (2008).
[CrossRef] [PubMed]

Maricevich, M.

M. S. Gee, R. Upadhyay, H. Bergquist, H. Alencar, F. Reynolds, M. Maricevich, R. Weissleder, L. Josephson, and U. Mahmood, “Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy,” Radiology 248(3), 925–935 (2008).
[CrossRef] [PubMed]

Martinelli, L.

L. Martinelli, H. Choumane, K.-N. Ha, G. Sagarzazu, C. Goutel, C. Weisbuch, T. Gacoin, and H. Benisty, “Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays: Role of a high rejection of excitation light,” Appl. Phys. Lett. 91(8), 083901–083903 (2007).
[CrossRef]

Massoud, T. F.

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17(5), 545–580 (2003).
[CrossRef] [PubMed]

Mathes, D.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[CrossRef]

Matsuo, M.

D. C. Ng, T. Tokuda, A. Yamamoto, M. Matsuo, M. Nunoshita, H. Tamura, Y. Ishikawa, S. Shiosaka, and J. Ohta, “On-chip biofluorescence imaging inside a brain tissue phantom using a CMOS image sensor for in vivo brain imaging verification,” Sens. Actuators B Chem. 119(1), 262–274 (2006).
[CrossRef]

McCarthy, T.

D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009).
[CrossRef] [PubMed]

Moerner, W. E.

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., ““Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing,” IEEE J. Quantum Electron. 40(5), 491–498 (2004).
[CrossRef]

Mukamel, E. A.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Munoz, N. M.

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Munro, E.

T. D. O'Sullivan, E. Munro, A. de la Zerda, N. Parashurama, R. Teed, Z. Walls, O. Levi, S. S. Gambhir, and J. S. Harris, “Implantable optical biosensor for in vivo molecular imaging,” Proc. SPIE 7173, 717309 (2009).
[CrossRef]

Ng, D. C.

D. C. Ng, T. Tokuda, A. Yamamoto, M. Matsuo, M. Nunoshita, H. Tamura, Y. Ishikawa, S. Shiosaka, and J. Ohta, “On-chip biofluorescence imaging inside a brain tissue phantom using a CMOS image sensor for in vivo brain imaging verification,” Sens. Actuators B Chem. 119(1), 262–274 (2006).
[CrossRef]

Nimmerjahn, A.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Nunoshita, M.

D. C. Ng, T. Tokuda, A. Yamamoto, M. Matsuo, M. Nunoshita, H. Tamura, Y. Ishikawa, S. Shiosaka, and J. Ohta, “On-chip biofluorescence imaging inside a brain tissue phantom using a CMOS image sensor for in vivo brain imaging verification,” Sens. Actuators B Chem. 119(1), 262–274 (2006).
[CrossRef]

Ohta, J.

D. C. Ng, T. Tokuda, A. Yamamoto, M. Matsuo, M. Nunoshita, H. Tamura, Y. Ishikawa, S. Shiosaka, and J. Ohta, “On-chip biofluorescence imaging inside a brain tissue phantom using a CMOS image sensor for in vivo brain imaging verification,” Sens. Actuators B Chem. 119(1), 262–274 (2006).
[CrossRef]

Olson, J.

O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson, and M. Zhang, “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Res. 69(15), 6200–6207 (2009).
[CrossRef] [PubMed]

Olson, J. M.

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

O'Sullivan, T. D.

T. D. O'Sullivan, E. Munro, A. de la Zerda, N. Parashurama, R. Teed, Z. Walls, O. Levi, S. S. Gambhir, and J. S. Harris, “Implantable optical biosensor for in vivo molecular imaging,” Proc. SPIE 7173, 717309 (2009).
[CrossRef]

Parashurama, N.

T. D. O'Sullivan, E. Munro, A. de la Zerda, N. Parashurama, R. Teed, Z. Walls, O. Levi, S. S. Gambhir, and J. S. Harris, “Implantable optical biosensor for in vivo molecular imaging,” Proc. SPIE 7173, 717309 (2009).
[CrossRef]

Peake, G. M.

G. A. Keeler, D. K. Serkland, K. M. Geib, J. F. Klem, and G. M. Peake, “In situ optical time-domain reflectometry (OTDR) for VCSEL-based communication systems,” Proc. SPIE 6132, 61320A (2006).
[CrossRef]

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[CrossRef] [PubMed]

Pifferi, A.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[CrossRef] [PubMed]

Pitner, J. B.

J. Thomas, A. Ambroise, K. Birchfield, W. Cai, C. Sandmann, S. Singh, K. Weidemaier, and J. B. Pitner, “Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites,” Proc. SPIE 6078, 60781–60789 (2006).
[CrossRef]

Pullar, B.

O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson, and M. Zhang, “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Res. 69(15), 6200–6207 (2009).
[CrossRef] [PubMed]

Rasmussen, J. C.

E. M. Sevick-Muraca and J. C. Rasmussen, “Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine,” J. Biomed. Opt. 13(4), 041303–041316 (2008).
[CrossRef] [PubMed]

Ravanpay, A. C.

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Reynolds, F.

M. S. Gee, R. Upadhyay, H. Bergquist, H. Alencar, F. Reynolds, M. Maricevich, R. Weissleder, L. Josephson, and U. Mahmood, “Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy,” Radiology 248(3), 925–935 (2008).
[CrossRef] [PubMed]

Royant, A.

X. Shu, A. Royant, M. Z. Lin, T. A. Aguilera, V. Lev-Ram, P. A. Steinbach, and R. Y. Tsien, “Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome,” Science 324(5928), 804–807 (2009).
[CrossRef] [PubMed]

Sagarzazu, G.

L. Martinelli, H. Choumane, K.-N. Ha, G. Sagarzazu, C. Goutel, C. Weisbuch, T. Gacoin, and H. Benisty, “Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays: Role of a high rejection of excitation light,” Appl. Phys. Lett. 91(8), 083901–083903 (2007).
[CrossRef]

Sandmann, C.

J. Thomas, A. Ambroise, K. Birchfield, W. Cai, C. Sandmann, S. Singh, K. Weidemaier, and J. B. Pitner, “Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites,” Proc. SPIE 6078, 60781–60789 (2006).
[CrossRef]

Sands, T. D.

J. A. Chediak, Z. Luo, J. Seo, N. Cheung, L. P. Lee, and T. D. Sands, “Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems,” Sens. Actuators A Phys. 111(1), 1–7 (2004).
[CrossRef]

Schnitzer, M. J.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Seo, J.

J. A. Chediak, Z. Luo, J. Seo, N. Cheung, L. P. Lee, and T. D. Sands, “Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems,” Sens. Actuators A Phys. 111(1), 1–7 (2004).
[CrossRef]

Serkland, D. K.

G. A. Keeler, D. K. Serkland, K. M. Geib, J. F. Klem, and G. M. Peake, “In situ optical time-domain reflectometry (OTDR) for VCSEL-based communication systems,” Proc. SPIE 6132, 61320A (2006).
[CrossRef]

Sevick-Muraca, E. M.

E. M. Sevick-Muraca and J. C. Rasmussen, “Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine,” J. Biomed. Opt. 13(4), 041303–041316 (2008).
[CrossRef] [PubMed]

Shah, N.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[CrossRef] [PubMed]

Shiosaka, S.

D. C. Ng, T. Tokuda, A. Yamamoto, M. Matsuo, M. Nunoshita, H. Tamura, Y. Ishikawa, S. Shiosaka, and J. Ohta, “On-chip biofluorescence imaging inside a brain tissue phantom using a CMOS image sensor for in vivo brain imaging verification,” Sens. Actuators B Chem. 119(1), 262–274 (2006).
[CrossRef]

Shu, X.

X. Shu, A. Royant, M. Z. Lin, T. A. Aguilera, V. Lev-Ram, P. A. Steinbach, and R. Y. Tsien, “Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome,” Science 324(5928), 804–807 (2009).
[CrossRef] [PubMed]

Singh, S.

J. Thomas, A. Ambroise, K. Birchfield, W. Cai, C. Sandmann, S. Singh, K. Weidemaier, and J. B. Pitner, “Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites,” Proc. SPIE 6078, 60781–60789 (2006).
[CrossRef]

Smela, E.

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[CrossRef] [PubMed]

Smith, S. J.

O. Levi, T. T. Lee, M. M. Lee, S. J. Smith, and J. S. Harris, “Integrated semiconductor optical sensors for cellular and neural imaging,” Appl. Opt. 46(10), 1881–1889 (2007).
[CrossRef] [PubMed]

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., ““Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing,” IEEE J. Quantum Electron. 40(5), 491–498 (2004).
[CrossRef]

E. Thrush, O. Levi, K. Wang, M. Wistey, J. S. Harris, and S. J. Smith, “Integrated semiconductor fluorescent detection system for biochip and biomedical applications,” Proc. SPIE 4626, 289–297 (2002).
[CrossRef]

Steinbach, P. A.

X. Shu, A. Royant, M. Z. Lin, T. A. Aguilera, V. Lev-Ram, P. A. Steinbach, and R. Y. Tsien, “Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome,” Science 324(5928), 804–807 (2009).
[CrossRef] [PubMed]

Stroud, M. R.

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Sun, C.

O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson, and M. Zhang, “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Res. 69(15), 6200–6207 (2009).
[CrossRef] [PubMed]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[CrossRef] [PubMed]

Sze, R. W.

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Tam, T.

M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE Trans. Biomed. Circuit Syst. 2(3), 193–203 (2008).
[CrossRef]

Tamura, H.

D. C. Ng, T. Tokuda, A. Yamamoto, M. Matsuo, M. Nunoshita, H. Tamura, Y. Ishikawa, S. Shiosaka, and J. Ohta, “On-chip biofluorescence imaging inside a brain tissue phantom using a CMOS image sensor for in vivo brain imaging verification,” Sens. Actuators B Chem. 119(1), 262–274 (2006).
[CrossRef]

Taroni, P.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[CrossRef] [PubMed]

Teed, R.

T. D. O'Sullivan, E. Munro, A. de la Zerda, N. Parashurama, R. Teed, Z. Walls, O. Levi, S. S. Gambhir, and J. S. Harris, “Implantable optical biosensor for in vivo molecular imaging,” Proc. SPIE 7173, 717309 (2009).
[CrossRef]

Thomas, J.

J. Thomas, A. Ambroise, K. Birchfield, W. Cai, C. Sandmann, S. Singh, K. Weidemaier, and J. B. Pitner, “Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites,” Proc. SPIE 6078, 60781–60789 (2006).
[CrossRef]

Thrush, E.

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., ““Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing,” IEEE J. Quantum Electron. 40(5), 491–498 (2004).
[CrossRef]

E. Thrush, O. Levi, K. Wang, M. Wistey, J. S. Harris, and S. J. Smith, “Integrated semiconductor fluorescent detection system for biochip and biomedical applications,” Proc. SPIE 4626, 289–297 (2002).
[CrossRef]

Tokuda, T.

D. C. Ng, T. Tokuda, A. Yamamoto, M. Matsuo, M. Nunoshita, H. Tamura, Y. Ishikawa, S. Shiosaka, and J. Ohta, “On-chip biofluorescence imaging inside a brain tissue phantom using a CMOS image sensor for in vivo brain imaging verification,” Sens. Actuators B Chem. 119(1), 262–274 (2006).
[CrossRef]

Torricelli, A.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[CrossRef] [PubMed]

Tromberg, B. J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[CrossRef] [PubMed]

Tsien, R. Y.

X. Shu, A. Royant, M. Z. Lin, T. A. Aguilera, V. Lev-Ram, P. A. Steinbach, and R. Y. Tsien, “Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome,” Science 324(5928), 804–807 (2009).
[CrossRef] [PubMed]

Twesten, R. D.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[CrossRef]

Upadhyay, R.

M. S. Gee, R. Upadhyay, H. Bergquist, H. Alencar, F. Reynolds, M. Maricevich, R. Weissleder, L. Josephson, and U. Mahmood, “Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy,” Radiology 248(3), 925–935 (2008).
[CrossRef] [PubMed]

Veiseh, M.

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Veiseh, O.

O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson, and M. Zhang, “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Res. 69(15), 6200–6207 (2009).
[CrossRef] [PubMed]

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Wada, T.

T. Kamei and T. Wada, “Contact-lens type of micromachined hydrogenated amorphous Si fluorescence detector coupled with microfluidic electrophoresis devices,” Appl. Phys. Lett. 89(11), 114101 (2006).
[CrossRef]

Walls, Z.

T. D. O'Sullivan, E. Munro, A. de la Zerda, N. Parashurama, R. Teed, Z. Walls, O. Levi, S. S. Gambhir, and J. S. Harris, “Implantable optical biosensor for in vivo molecular imaging,” Proc. SPIE 7173, 717309 (2009).
[CrossRef]

Wang, K.

E. Thrush, O. Levi, K. Wang, M. Wistey, J. S. Harris, and S. J. Smith, “Integrated semiconductor fluorescent detection system for biochip and biomedical applications,” Proc. SPIE 4626, 289–297 (2002).
[CrossRef]

Weidemaier, K.

J. Thomas, A. Ambroise, K. Birchfield, W. Cai, C. Sandmann, S. Singh, K. Weidemaier, and J. B. Pitner, “Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites,” Proc. SPIE 6078, 60781–60789 (2006).
[CrossRef]

Weisbuch, C.

L. Martinelli, H. Choumane, K.-N. Ha, G. Sagarzazu, C. Goutel, C. Weisbuch, T. Gacoin, and H. Benisty, “Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays: Role of a high rejection of excitation light,” Appl. Phys. Lett. 91(8), 083901–083903 (2007).
[CrossRef]

Weissleder, R.

M. S. Gee, R. Upadhyay, H. Bergquist, H. Alencar, F. Reynolds, M. Maricevich, R. Weissleder, L. Josephson, and U. Mahmood, “Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy,” Radiology 248(3), 925–935 (2008).
[CrossRef] [PubMed]

Wistey, M.

E. Thrush, O. Levi, K. Wang, M. Wistey, J. S. Harris, and S. J. Smith, “Integrated semiconductor fluorescent detection system for biochip and biomedical applications,” Proc. SPIE 4626, 289–297 (2002).
[CrossRef]

Yadid-Pecht, O.

M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE Trans. Biomed. Circuit Syst. 2(3), 193–203 (2008).
[CrossRef]

Yamamoto, A.

D. C. Ng, T. Tokuda, A. Yamamoto, M. Matsuo, M. Nunoshita, H. Tamura, Y. Ishikawa, S. Shiosaka, and J. Ohta, “On-chip biofluorescence imaging inside a brain tissue phantom using a CMOS image sensor for in vivo brain imaging verification,” Sens. Actuators B Chem. 119(1), 262–274 (2006).
[CrossRef]

Yang, G. M.

J.-H. Kim, D. H. Lim, and G. M. Yang, “Selective etching of AlGaAs/GaAs structures using the solutions of citric acid/H2O2 and de-ionized H2O/buffered oxide etch,” J. Vac. Sci. Technol. B 16(2), 558–560 (1998).
[CrossRef]

Zhang, M.

O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson, and M. Zhang, “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Res. 69(15), 6200–6207 (2009).
[CrossRef] [PubMed]

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

T. Kamei and T. Wada, “Contact-lens type of micromachined hydrogenated amorphous Si fluorescence detector coupled with microfluidic electrophoresis devices,” Appl. Phys. Lett. 89(11), 114101 (2006).
[CrossRef]

L. Martinelli, H. Choumane, K.-N. Ha, G. Sagarzazu, C. Goutel, C. Weisbuch, T. Gacoin, and H. Benisty, “Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays: Role of a high rejection of excitation light,” Appl. Phys. Lett. 91(8), 083901–083903 (2007).
[CrossRef]

Cancer Res. (2)

O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson, and M. Zhang, “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Res. 69(15), 6200–6207 (2009).
[CrossRef] [PubMed]

M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007).
[CrossRef] [PubMed]

Curr. Opin. Chem. Biol. (1)

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
[CrossRef] [PubMed]

Electron. Lett. (1)

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, J. B. Doucet, P. Dubreuil, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

Genes Dev. (1)

T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17(5), 545–580 (2003).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997).
[CrossRef]

E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing,” IEEE J. Quantum Electron. 40(5), 491–498 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997).
[CrossRef]

IEEE Sens. J. (1)

L. Luan, R. D. Evans, N. M. Jokerst, and R. B. Fair, “Integrated Optical Sensor in a Digital Microfluidic Platform,” IEEE Sens. J. 8(5), 628–635 (2008).
[CrossRef]

IEEE Trans. Biomed. Circuit Syst. (1)

M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE Trans. Biomed. Circuit Syst. 2(3), 193–203 (2008).
[CrossRef]

J. Biomed. Opt. (1)

E. M. Sevick-Muraca and J. C. Rasmussen, “Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine,” J. Biomed. Opt. 13(4), 041303–041316 (2008).
[CrossRef] [PubMed]

J. Vac. Sci. Technol. B (1)

J.-H. Kim, D. H. Lim, and G. M. Yang, “Selective etching of AlGaAs/GaAs structures using the solutions of citric acid/H2O2 and de-ionized H2O/buffered oxide etch,” J. Vac. Sci. Technol. B 16(2), 558–560 (1998).
[CrossRef]

Lab Chip (1)

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[CrossRef] [PubMed]

Nat. Methods (1)

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000).
[CrossRef] [PubMed]

Photochem. Photobiol. Sci. (1)

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003).
[CrossRef] [PubMed]

Proc. SPIE (5)

G. A. Keeler, D. K. Serkland, K. M. Geib, J. F. Klem, and G. M. Peake, “In situ optical time-domain reflectometry (OTDR) for VCSEL-based communication systems,” Proc. SPIE 6132, 61320A (2006).
[CrossRef]

T. D. O'Sullivan, E. Munro, A. de la Zerda, N. Parashurama, R. Teed, Z. Walls, O. Levi, S. S. Gambhir, and J. S. Harris, “Implantable optical biosensor for in vivo molecular imaging,” Proc. SPIE 7173, 717309 (2009).
[CrossRef]

E. Thrush, O. Levi, K. Wang, M. Wistey, J. S. Harris, and S. J. Smith, “Integrated semiconductor fluorescent detection system for biochip and biomedical applications,” Proc. SPIE 4626, 289–297 (2002).
[CrossRef]

J. Thomas, A. Ambroise, K. Birchfield, W. Cai, C. Sandmann, S. Singh, K. Weidemaier, and J. B. Pitner, “Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites,” Proc. SPIE 6078, 60781–60789 (2006).
[CrossRef]

M. K. Hibbs-Brenner, K. L. Johnson, and M. Bendett, “VCSEL technology for medical diagnostics and therapeutics,” Proc. SPIE 7180, 71800–71810 (2009).
[CrossRef]

Radiology (1)

M. S. Gee, R. Upadhyay, H. Bergquist, H. Alencar, F. Reynolds, M. Maricevich, R. Weissleder, L. Josephson, and U. Mahmood, “Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy,” Radiology 248(3), 925–935 (2008).
[CrossRef] [PubMed]

Science (1)

X. Shu, A. Royant, M. Z. Lin, T. A. Aguilera, V. Lev-Ram, P. A. Steinbach, and R. Y. Tsien, “Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome,” Science 324(5928), 804–807 (2009).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

J. A. Chediak, Z. Luo, J. Seo, N. Cheung, L. P. Lee, and T. D. Sands, “Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems,” Sens. Actuators A Phys. 111(1), 1–7 (2004).
[CrossRef]

Sens. Actuators B Chem. (2)

E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., ““Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005).
[CrossRef]

D. C. Ng, T. Tokuda, A. Yamamoto, M. Matsuo, M. Nunoshita, H. Tamura, Y. Ishikawa, S. Shiosaka, and J. Ohta, “On-chip biofluorescence imaging inside a brain tissue phantom using a CMOS image sensor for in vivo brain imaging verification,” Sens. Actuators B Chem. 119(1), 262–274 (2006).
[CrossRef]

Other (4)

D. Starikov, F. Benkabou, N. Medelci, and A. Bensaoula, “Integrated multi-wavelength fluorescence sensors,” in Proceedings of IEEE Sensors for Industry Conference, (Institute of Electrical and Electronics Engineers, 2002), pp. 15–18.

K. D. Choquette, A. Giannopoulos, A. M. Kasten, C. Long, and C. Chen, “2-Dimensional Integrated VCSEL and PiN Photodetector Arrays for a Bidirectional Optical Links,” in IEEE Aerospace Conference, (Institute of Electrical and Electronics Engineers, 2007), pp. 1–7.

T. D. O'Sullivan, E. Munro, C. Conca, N. Parashurama, A. de la Zerda, S. S. Gambhir, J. S. Harris, and O. Levi, “Near-Infrared in vivo Fluorescence Sensor with Integrated Dielectric Emission Filter,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWA49.

T. D. O'Sullivan, A. Wechselberger, O. Levi, and J. S. Harris, “Compact Semiconductor Bioluminescence Bio-sensors,” in Frontiers in Optics / Laser Science, Technical Digest (CD) (Optical Society of America, 2007), paper JMD5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) SEM micrograph of a single-pixel monolithically integrated fluorescence sensor with thin film dielectric fluorescence emission filter and (b) cross-section of the epitaxial layers of the semiconductor-based sensor (not shown to scale).

Fig. 2
Fig. 2

Fabrication process flow of the integrated VCSEL/PIN photodetector substrate (a) includes: b) removal of the detector layers above the VCSEL and depositing top VCSEL P contacts; c) etching of the VCSEL mesa, oxidation, and deposition of a backside contact; d) depositing a top N PIN detector contact, etching the detector, passivation, and depositing a bottom P PIN contact; e) formation of hard 3D photoresist microstructures for contact vias and optical blocking; and f) lift-off of a thin-film dielectric fluorescence filter.

Fig. 3
Fig. 3

(a) LIV Characteristics of the integrated VCSEL (device shown has a 12µm oxide aperture) and (b) demonstration of the reduced PIN photodetector dark current with sidewall cleaning and passivation

Fig. 4
Fig. 4

(a) Integrated sensor excitation/emission spectra overlaid with Cy5.5 characteristics and (b) normalized crosstalk between VCSEL and detector under different filter configurations (the laser threshold varies slightly in the different configurations because each curve represents a different device)

Fig. 5
Fig. 5

Measured response of the integrated sensor to varying concentrations of Cy5.5 in PBS solution; Inset: schematic of the experiment

Fig. 6
Fig. 6

(a) Photograph showing the sensor placement during an experiment in a living mouse to determine sensitivity and (b) experimental response of the sensor to varying concentrations of subcutaneously injected Cy5.5 in nude mice (N = 2 mice at each concentration)

Fig. 7
Fig. 7

(a) Comparison of the integrated sensor response to data from a CCD-based small animal fluorescence imager and (b) fluorescence images of mice injected with 50 and 25nM concentrations of Cy5.5

Tables (1)

Tables Icon

Table 1 Contributions to optical crosstalk in the integrated sensor

Metrics