Abstract

We numerically investigate the coupling efficiency of a single self-assembled quantum dot to a metallic slot waveguide in the presence of leaky plasmonic modes. Leaky plasmonic modes refer to radiation modes with plasmonic features, resulting from the inhomogeneity of the dielectric environment in which the metallic slot waveguide is embedded. Compared to the ideal case of a homogenous dielectric environment, the coupling efficiency of an emitter to a metallic slot waveguide is significantly reduced. We attribute the reduction to the coupling to leaky plasmonic modes. By increasing the refractive index of the coating layer to minimize the impacts from the leaky plasmonic modes, we find that the coupling efficiency of the quantum dot to the single mode supported by the metallic slot waveguide can be enhanced by more than a factor 2.

©2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transient and steady-state entanglement mediated by three-dimensional plasmonic waveguides

S. Ali Hassani Gangaraj, Andrei Nemilentsau, George W. Hanson, and Stephen Hughes
Opt. Express 23(17) 22330-22346 (2015)

Enhanced and directional single-photon emission in hyperbolic metamaterials

Ward D. Newman, Cristian L. Cortes, and Zubin Jacob
J. Opt. Soc. Am. B 30(4) 766-775 (2013)

Small slot waveguide rings for on-chip quantum optical circuits

Nir Rotenberg, Pierre Türschmann, Harald R. Haakh, Diego Martin-Cano, Stephan Götzinger, and Vahid Sandoghdar
Opt. Express 25(5) 5397-5414 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4027 (1999).
    [Crossref]
  2. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)  450, 402–406 (2007).
    [Crossref] [PubMed]
  3. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002–053005 (2006).
    [Crossref] [PubMed]
  4. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
    [Crossref]
  5. T. Ishikawa, S. Kohmoto, and K. Asakawa, “Site control of self-organized InAs dots on GaAs substrates by in situ electron-beam lithography and molecular-beam epitaxy,” Appl. Phys. Lett. 73, 1712 (1998).
    [Crossref]
  6. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780 (2004).
    [Crossref]
  7. J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303–073306 (2008).
    [Crossref]
  8. T. Søndergaard and B. Tromborg, “General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier,” Phys. Rev. A 64, 033812–033825 (2001).
    [Crossref]
  9. Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78, 153111–153114 (2008).
    [Crossref]
  10. C. Creatore, L. C. Andreani, M. Miritello, R. L. Savio, and F. Priolo, “Modification of erbium radiative lifetime in planar silicon slot waveguides,” Appl. Phys. Lett. 94, 103112 (2009).
    [Crossref]
  11. Y. Gong, S. Yerci, R. Li, L. D. Negro, and J. Vuckovic, “Enhanced light emission from erbium doped silicon nitride in plasmonic metal-insulator-metal structures,” Opt. Express 17, 20642–20650 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-23-20642.
    [Crossref] [PubMed]
  12. Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17, 7479–7490 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-9-7479.
    [Crossref] [PubMed]
  13. Y. Chen, T. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431–125441 (2010).
    [Crossref]
  14. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431–165439 (2005).
    [Crossref]
  15. L. Novotny and B. Hecht, Principles of nano-optics, (Cambridge University Press, 2006).
  16. For the guided plasmonic mode, Ex and Ez are in the plane in which the the dipole moment of QDs dominates. However the field strength of the longitudinal component (Ez) is less than 1% of the transverse components (Ex), therefore, we only consider the X component of the electric field and the exciton dipole moment for the plasmonic emission enhancement.
  17. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2008).
    [Crossref]

2010 (1)

Y. Chen, T. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431–125441 (2010).
[Crossref]

2009 (3)

2008 (3)

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78, 153111–153114 (2008).
[Crossref]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2008).
[Crossref]

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303–073306 (2008).
[Crossref]

2007 (1)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)  450, 402–406 (2007).
[Crossref] [PubMed]

2006 (1)

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002–053005 (2006).
[Crossref] [PubMed]

2005 (2)

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
[Crossref]

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431–165439 (2005).
[Crossref]

2004 (1)

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780 (2004).
[Crossref]

2001 (1)

T. Søndergaard and B. Tromborg, “General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier,” Phys. Rev. A 64, 033812–033825 (2001).
[Crossref]

1999 (1)

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4027 (1999).
[Crossref]

1998 (1)

T. Ishikawa, S. Kohmoto, and K. Asakawa, “Site control of self-organized InAs dots on GaAs substrates by in situ electron-beam lithography and molecular-beam epitaxy,” Appl. Phys. Lett. 73, 1712 (1998).
[Crossref]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)  450, 402–406 (2007).
[Crossref] [PubMed]

Andreani, L. C.

C. Creatore, L. C. Andreani, M. Miritello, R. L. Savio, and F. Priolo, “Modification of erbium radiative lifetime in planar silicon slot waveguides,” Appl. Phys. Lett. 94, 103112 (2009).
[Crossref]

Asakawa, K.

T. Ishikawa, S. Kohmoto, and K. Asakawa, “Site control of self-organized InAs dots on GaAs substrates by in situ electron-beam lithography and molecular-beam epitaxy,” Appl. Phys. Lett. 73, 1712 (1998).
[Crossref]

Atwater, H. A.

Awschalom, D.

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4027 (1999).
[Crossref]

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2008).
[Crossref]

Briggs, R. M.

Brongersma, M. L.

Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17, 7479–7490 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-9-7479.
[Crossref] [PubMed]

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78, 153111–153114 (2008).
[Crossref]

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431–165439 (2005).
[Crossref]

Burkard, G.

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4027 (1999).
[Crossref]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)  450, 402–406 (2007).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002–053005 (2006).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, T. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431–125441 (2010).
[Crossref]

Creatore, C.

C. Creatore, L. C. Andreani, M. Miritello, R. L. Savio, and F. Priolo, “Modification of erbium radiative lifetime in planar silicon slot waveguides,” Appl. Phys. Lett. 94, 103112 (2009).
[Crossref]

DiVincenzo, D. P.

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4027 (1999).
[Crossref]

Fan, S.

Gong, Y.

Gregersen, N.

Y. Chen, T. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431–125441 (2010).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of nano-optics, (Cambridge University Press, 2006).

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)  450, 402–406 (2007).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002–053005 (2006).
[Crossref] [PubMed]

Hvam, J. M.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303–073306 (2008).
[Crossref]

Imamoglu, A.

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4027 (1999).
[Crossref]

Ishihara, T.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780 (2004).
[Crossref]

Ishikawa, T.

T. Ishikawa, S. Kohmoto, and K. Asakawa, “Site control of self-organized InAs dots on GaAs substrates by in situ electron-beam lithography and molecular-beam epitaxy,” Appl. Phys. Lett. 73, 1712 (1998).
[Crossref]

Johansen, J.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303–073306 (2008).
[Crossref]

Jun, Y. C.

Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17, 7479–7490 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-9-7479.
[Crossref] [PubMed]

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78, 153111–153114 (2008).
[Crossref]

Kekatpure, R. D.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78, 153111–153114 (2008).
[Crossref]

Kohmoto, S.

T. Ishikawa, S. Kohmoto, and K. Asakawa, “Site control of self-organized InAs dots on GaAs substrates by in situ electron-beam lithography and molecular-beam epitaxy,” Appl. Phys. Lett. 73, 1712 (1998).
[Crossref]

Kristensen, P. T.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303–073306 (2008).
[Crossref]

Li, R.

Lodahl, P.

Y. Chen, T. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431–125441 (2010).
[Crossref]

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303–073306 (2008).
[Crossref]

Loss, D.

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4027 (1999).
[Crossref]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)  450, 402–406 (2007).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002–053005 (2006).
[Crossref] [PubMed]

Lund-Hansen, T.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303–073306 (2008).
[Crossref]

Luo, X.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780 (2004).
[Crossref]

Miritello, M.

C. Creatore, L. C. Andreani, M. Miritello, R. L. Savio, and F. Priolo, “Modification of erbium radiative lifetime in planar silicon slot waveguides,” Appl. Phys. Lett. 94, 103112 (2009).
[Crossref]

Mørk, J.

Y. Chen, T. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431–125441 (2010).
[Crossref]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)  450, 402–406 (2007).
[Crossref] [PubMed]

Negro, L. D.

Nielsen, T.

Y. Chen, T. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431–125441 (2010).
[Crossref]

Nikolaev, I. S.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303–073306 (2008).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of nano-optics, (Cambridge University Press, 2006).

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)  450, 402–406 (2007).
[Crossref] [PubMed]

Priolo, F.

C. Creatore, L. C. Andreani, M. Miritello, R. L. Savio, and F. Priolo, “Modification of erbium radiative lifetime in planar silicon slot waveguides,” Appl. Phys. Lett. 94, 103112 (2009).
[Crossref]

Savio, R. L.

C. Creatore, L. C. Andreani, M. Miritello, R. L. Savio, and F. Priolo, “Modification of erbium radiative lifetime in planar silicon slot waveguides,” Appl. Phys. Lett. 94, 103112 (2009).
[Crossref]

Selker, M. D.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431–165439 (2005).
[Crossref]

Sherwin, M.

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4027 (1999).
[Crossref]

Small, A.

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4027 (1999).
[Crossref]

Søndergaard, T.

T. Søndergaard and B. Tromborg, “General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier,” Phys. Rev. A 64, 033812–033825 (2001).
[Crossref]

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002–053005 (2006).
[Crossref] [PubMed]

Stobbe, S.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303–073306 (2008).
[Crossref]

Tromborg, B.

T. Søndergaard and B. Tromborg, “General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier,” Phys. Rev. A 64, 033812–033825 (2001).
[Crossref]

Veronis, G.

Vos, W. L.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303–073306 (2008).
[Crossref]

Vuckovic, J.

White, J. S.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78, 153111–153114 (2008).
[Crossref]

Yerci, S.

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)  450, 402–406 (2007).
[Crossref] [PubMed]

Zia, R.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431–165439 (2005).
[Crossref]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)  450, 402–406 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

T. Ishikawa, S. Kohmoto, and K. Asakawa, “Site control of self-organized InAs dots on GaAs substrates by in situ electron-beam lithography and molecular-beam epitaxy,” Appl. Phys. Lett. 73, 1712 (1998).
[Crossref]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780 (2004).
[Crossref]

C. Creatore, L. C. Andreani, M. Miritello, R. L. Savio, and F. Priolo, “Modification of erbium radiative lifetime in planar silicon slot waveguides,” Appl. Phys. Lett. 94, 103112 (2009).
[Crossref]

Nature (1)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature (London)  450, 402–406 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

T. Søndergaard and B. Tromborg, “General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier,” Phys. Rev. A 64, 033812–033825 (2001).
[Crossref]

Phys. Rev. B (5)

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B 78, 153111–153114 (2008).
[Crossref]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2008).
[Crossref]

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303–073306 (2008).
[Crossref]

Y. Chen, T. Nielsen, N. Gregersen, P. Lodahl, and J. Mørk, “Finite element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides,” Phys. Rev. B 81, 125431–125441 (2010).
[Crossref]

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431–165439 (2005).
[Crossref]

Phys. Rev. Lett. (2)

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002–053005 (2006).
[Crossref] [PubMed]

A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information Processing Using Quantum Dot Spins and Cavity QED,” Phys. Rev. Lett. 83, 4204–4027 (1999).
[Crossref]

Other (2)

L. Novotny and B. Hecht, Principles of nano-optics, (Cambridge University Press, 2006).

For the guided plasmonic mode, Ex and Ez are in the plane in which the the dipole moment of QDs dominates. However the field strength of the longitudinal component (Ez) is less than 1% of the transverse components (Ex), therefore, we only consider the X component of the electric field and the exciton dipole moment for the plasmonic emission enhancement.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Sketch of QDs coupled to a metallic slot waveguide. The inserted AFM image illustrates self-assembled InAs/GaAs QDs. (b) Cross section of the metallic slot waveguide with width, height, and gap width denoted by W, H, and D, respectively.
Fig. 2.
Fig. 2. (a) Effective mode index (neff) versus width of the gold strip (W) positioned on top of the GaAs substrate, with the material indices of nc = 1.5, and ns = 3.5. (b,c) Magnitude and orientation of the electric field in the X-Y plane for the gap mode and the separated mode for metallic waveguide with dimensions W = 100 nm, D = 30nm, H = 40nm. The field orientations are given by the red arrows, the length of which give the amplitude of the electric field. Inset in (a): Propagation length (field amplitude 1/e lengths) of the guided plasmonic modes versus W.
Fig. 3.
Fig. 3. Illustration of evaluating the integral representation of the dyadic Green’s function. The discrete poles yield the contribution to the decay rates into the guided modes, while the gray and the yellow regions represent the continuum contributions to the radiation modes and the leaky plasmonic modes, respectively. The blue line C denotes the full integration path.
Fig. 4.
Fig. 4. Gap-width dependence of the plasmonic decay rates, SE β-factors, and the propagation length of the gap mode for an inhomogeneous dielectric environment (a, b, c) and for a homogenous dielectric environment (d, e, f). In the subplot (a, b, c), nc = 1.5, W = 100 nm and ns = 3.5, while for homogenous case in the subplot (d, e, f), the surrounding material is air (nair = 1.0), and W = 100 nm.
Fig. 5.
Fig. 5. Position dependence of the plasmonic decay rates and SE β-factors for the metallic slot waveguide with inhomogenous environment(nc = 1.5, ns = 3.5) and the homogenous case (nc = ns = 1.0) with X QDs = 0, H = 40 nm, W = 100 nm.
Fig. 6.
Fig. 6. Role of inhomogeneous environment, quantified by variation of plasmonic decay rate and SE β-factor with nc for fixed ns = 3.5, X QDs = 0, H = 40 nm, W = 100 nm, D = 40 nm. The black line shows the propagation length of the gap mode.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ = π ω 0 3 h ¯ ε 0 μ 2 ρ μ ( r 0 , ω 0 ) ,
G ̿ ( r ¯ , r ¯ , ω ) = Σ p 0 + + ε 2 E ¯ α ( x , y ) [ E ¯ α ~ ( x , y ) ] * e j β ( z z ) [ k 0 2 ε 2 ( β 2 + k 2 2 ) ] N α d β d k 2
γ pl γ 0 = 6 π 2 c 3 E α 0 , x ( x , y ) [ E α 0 , x ( x , y ) ] * ω 0 2 N α υ g

Metrics