Abstract

We present resonant terahertz transmission in a composite plasmonic film comprised of an array of subwavelength metallic patches and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stop-band to a pass-band and up to π/2 phase shift achieved in the composite plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
    [CrossRef] [PubMed]
  4. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
    [CrossRef]
  5. C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
    [CrossRef]
  6. C. Janke, J. G. Rivas, P. H. Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30(18), 2357–2359 (2005).
    [CrossRef] [PubMed]
  7. W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
    [CrossRef] [PubMed]
  8. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
    [CrossRef] [PubMed]
  9. E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007).
    [CrossRef] [PubMed]
  10. C. L. Haynes, A. D. Mcfarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
    [CrossRef]
  11. X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92(12), 121103 (2008).
    [CrossRef]
  12. X. Lu and W. Zhang, “Terahertz localized plasmonic properties of subwavelength ring and coaxial geometries,” Appl. Phys. Lett. 94(18), 181106 (2009).
    [CrossRef]
  13. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett. 30(24), 3404–3406 (2005).
    [CrossRef]
  14. X. Lu, J. Han, and W. Zhang, “Transmission field enhancement of terahertz pulses in plasmonic, rectangular coaxial geometries,” Opt. Lett. 35(7), 904–906 (2010).
    [CrossRef] [PubMed]
  15. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic array,” Phys. Rev. Lett. 94(3), 033902 (2005).
    [CrossRef] [PubMed]
  16. A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
    [CrossRef]
  17. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [CrossRef]
  18. D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29(8), 896–898 (2004).
    [CrossRef] [PubMed]
  19. X. Shou, A. Agrawal, and A. Nahata, “Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures,” Opt. Express 13(24), 9834–9840 (2005).
    [CrossRef] [PubMed]
  20. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  21. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006 (1990).
    [CrossRef]
  22. H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [CrossRef]
  23. F. Gao, L. Carr, C. D. Porter, D. B. Tanner, G. P. Williams, C. J. Hirschmugl, B. Dutta, X. D. Wu, and S. Etemad, “Quasiparticle damping and the coherence peak in Yba2Cu3O7-δ,” Phys. Rev. B 54(1), 700–710 (1996).
    [CrossRef]
  24. K. P. H. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon-on-sapphire studied by optical-pump-terahertz-probe experiments,” Appl. Phys. Lett. 78(22), 3478 (2001).
    [CrossRef]
  25. K. Das, “Comment on published carrier lifetime data on silicon-on-insulator (SOI) materials,” Electron. Lett. 23(11), 579 (1987).
    [CrossRef]
  26. A. K. Azad and W. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett. 30(21), 2945–2947 (2005).
    [CrossRef] [PubMed]
  27. A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays,” Opt. Lett. 31(17), 2637–2639 (2006).
    [CrossRef] [PubMed]
  28. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [CrossRef]
  29. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Sub-picosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved THz spectroscopy,” J. Appl. Phys. 90(12), 5915 (2001).
    [CrossRef]
  30. A. K. Azad, H.-T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
    [CrossRef]

2010 (1)

2009 (4)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

A. K. Azad, H.-T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[CrossRef]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

X. Lu and W. Zhang, “Terahertz localized plasmonic properties of subwavelength ring and coaxial geometries,” Appl. Phys. Lett. 94(18), 181106 (2009).
[CrossRef]

2008 (3)

X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92(12), 121103 (2008).
[CrossRef]

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

2007 (3)

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
[CrossRef] [PubMed]

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[CrossRef]

E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (6)

2004 (2)

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29(8), 896–898 (2004).
[CrossRef] [PubMed]

2003 (2)

C. L. Haynes, A. D. Mcfarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

2001 (2)

K. P. H. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon-on-sapphire studied by optical-pump-terahertz-probe experiments,” Appl. Phys. Lett. 78(22), 3478 (2001).
[CrossRef]

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Sub-picosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved THz spectroscopy,” J. Appl. Phys. 90(12), 5915 (2001).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1996 (1)

F. Gao, L. Carr, C. D. Porter, D. B. Tanner, G. P. Williams, C. J. Hirschmugl, B. Dutta, X. D. Wu, and S. Etemad, “Quasiparticle damping and the coherence peak in Yba2Cu3O7-δ,” Phys. Rev. B 54(1), 700–710 (1996).
[CrossRef]

1990 (1)

1987 (1)

K. Das, “Comment on published carrier lifetime data on silicon-on-insulator (SOI) materials,” Electron. Lett. 23(11), 579 (1987).
[CrossRef]

Agrawal, A.

Averitt, R. D.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

A. K. Azad, H.-T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[CrossRef]

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
[CrossRef] [PubMed]

A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays,” Opt. Lett. 31(17), 2637–2639 (2006).
[CrossRef] [PubMed]

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
[CrossRef]

A. K. Azad and W. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett. 30(21), 2945–2947 (2005).
[CrossRef] [PubMed]

Badenes, G.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Beard, M. C.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Sub-picosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved THz spectroscopy,” J. Appl. Phys. 90(12), 5915 (2001).
[CrossRef]

Bolivar, P. H.

Bonn, M.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Brueck, S. R. J.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic array,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

Capasso, F.

Carr, L.

F. Gao, L. Carr, C. D. Porter, D. B. Tanner, G. P. Williams, C. J. Hirschmugl, B. Dutta, X. D. Wu, and S. Etemad, “Quasiparticle damping and the coherence peak in Yba2Cu3O7-δ,” Phys. Rev. B 54(1), 700–710 (1996).
[CrossRef]

Cesario, J.

Chen, H.-T.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

A. K. Azad, H.-T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[CrossRef]

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Chen, J.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
[CrossRef] [PubMed]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

Cubukcu, E.

Das, K.

K. Das, “Comment on published carrier lifetime data on silicon-on-insulator (SOI) materials,” Electron. Lett. 23(11), 579 (1987).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dutta, B.

F. Gao, L. Carr, C. D. Porter, D. B. Tanner, G. P. Williams, C. J. Hirschmugl, B. Dutta, X. D. Wu, and S. Etemad, “Quasiparticle damping and the coherence peak in Yba2Cu3O7-δ,” Phys. Rev. B 54(1), 700–710 (1996).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Enoch, S.

Etemad, S.

F. Gao, L. Carr, C. D. Porter, D. B. Tanner, G. P. Williams, C. J. Hirschmugl, B. Dutta, X. D. Wu, and S. Etemad, “Quasiparticle damping and the coherence peak in Yba2Cu3O7-δ,” Phys. Rev. B 54(1), 700–710 (1996).
[CrossRef]

Fan, W.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic array,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

Fattinger, Ch.

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Gao, F.

F. Gao, L. Carr, C. D. Porter, D. B. Tanner, G. P. Williams, C. J. Hirschmugl, B. Dutta, X. D. Wu, and S. Etemad, “Quasiparticle damping and the coherence peak in Yba2Cu3O7-δ,” Phys. Rev. B 54(1), 700–710 (1996).
[CrossRef]

Garcia-Vidal, F. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Giessen, H.

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[CrossRef]

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Gossard, A. C.

A. K. Azad, H.-T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[CrossRef]

Grischkowsky, D.

Gunnarsson, L.

C. L. Haynes, A. D. Mcfarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Han, J.

X. Lu, J. Han, and W. Zhang, “Transmission field enhancement of terahertz pulses in plasmonic, rectangular coaxial geometries,” Opt. Lett. 35(7), 904–906 (2010).
[CrossRef] [PubMed]

X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92(12), 121103 (2008).
[CrossRef]

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
[CrossRef] [PubMed]

Haynes, C. L.

C. L. Haynes, A. D. Mcfarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

He, M.

Hegmann, F. A.

K. P. H. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon-on-sapphire studied by optical-pump-terahertz-probe experiments,” Appl. Phys. Lett. 78(22), 3478 (2001).
[CrossRef]

Hendry, E.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Hibbins, A. P.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Hirschmugl, C. J.

F. Gao, L. Carr, C. D. Porter, D. B. Tanner, G. P. Williams, C. J. Hirschmugl, B. Dutta, X. D. Wu, and S. Etemad, “Quasiparticle damping and the coherence peak in Yba2Cu3O7-δ,” Phys. Rev. B 54(1), 700–710 (1996).
[CrossRef]

Janke, C.

Käll, M.

C. L. Haynes, A. D. Mcfarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Kasarla, S. R.

A. K. Azad, H.-T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[CrossRef]

Kasemo, B.

C. L. Haynes, A. D. Mcfarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Keiding, S.

Kurz, H.

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Lederer, F.

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Lockyear, M. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Lu, H.

A. K. Azad, H.-T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[CrossRef]

Lu, X.

X. Lu, J. Han, and W. Zhang, “Transmission field enhancement of terahertz pulses in plasmonic, rectangular coaxial geometries,” Opt. Lett. 35(7), 904–906 (2010).
[CrossRef] [PubMed]

X. Lu and W. Zhang, “Terahertz localized plasmonic properties of subwavelength ring and coaxial geometries,” Appl. Phys. Lett. 94(18), 181106 (2009).
[CrossRef]

A. K. Azad, H.-T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[CrossRef]

X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92(12), 121103 (2008).
[CrossRef]

Lui, K. P. H.

K. P. H. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon-on-sapphire studied by optical-pump-terahertz-probe experiments,” Appl. Phys. Lett. 78(22), 3478 (2001).
[CrossRef]

MacDonald, K. F.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Malloy, K. J.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic array,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

Martin-Moreno, L.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Mcfarland, A. D.

C. L. Haynes, A. D. Mcfarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Minhas, B.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic array,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

Nahata, A.

O’Hara, J. F.

A. K. Azad, H.-T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[CrossRef]

O'Hara, J. F.

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Porter, C. D.

F. Gao, L. Carr, C. D. Porter, D. B. Tanner, G. P. Williams, C. J. Hirschmugl, B. Dutta, X. D. Wu, and S. Etemad, “Quasiparticle damping and the coherence peak in Yba2Cu3O7-δ,” Phys. Rev. B 54(1), 700–710 (1996).
[CrossRef]

Prikulis, J.

C. L. Haynes, A. D. Mcfarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Qu, D.

Quidant, R.

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Rivas, J. G.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

C. Janke, J. G. Rivas, P. H. Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30(18), 2357–2359 (2005).
[CrossRef] [PubMed]

Rockstuhl, C.

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[CrossRef]

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Schatz, G. C.

C. L. Haynes, A. D. Mcfarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Schmuttenmaer, C. A.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Sub-picosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved THz spectroscopy,” J. Appl. Phys. 90(12), 5915 (2001).
[CrossRef]

Shou, X.

Shrekenhamer, D. B.

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Smythe, E. J.

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Tanner, D. B.

F. Gao, L. Carr, C. D. Porter, D. B. Tanner, G. P. Williams, C. J. Hirschmugl, B. Dutta, X. D. Wu, and S. Etemad, “Quasiparticle damping and the coherence peak in Yba2Cu3O7-δ,” Phys. Rev. B 54(1), 700–710 (1996).
[CrossRef]

Taylor, A. J.

A. K. Azad, H.-T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Tian, Z.

A. K. Azad, H.-T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[CrossRef]

Turner, G. M.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Sub-picosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved THz spectroscopy,” J. Appl. Phys. 90(12), 5915 (2001).
[CrossRef]

Van Duyne, R. P.

C. L. Haynes, A. D. Mcfarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

van Exter, M.

Williams, G. P.

F. Gao, L. Carr, C. D. Porter, D. B. Tanner, G. P. Williams, C. J. Hirschmugl, B. Dutta, X. D. Wu, and S. Etemad, “Quasiparticle damping and the coherence peak in Yba2Cu3O7-δ,” Phys. Rev. B 54(1), 700–710 (1996).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wu, X. D.

F. Gao, L. Carr, C. D. Porter, D. B. Tanner, G. P. Williams, C. J. Hirschmugl, B. Dutta, X. D. Wu, and S. Etemad, “Quasiparticle damping and the coherence peak in Yba2Cu3O7-δ,” Phys. Rev. B 54(1), 700–710 (1996).
[CrossRef]

Xu, J.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
[CrossRef] [PubMed]

Zentgraf, T.

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[CrossRef]

Zhang, S.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic array,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

Zhang, W.

X. Lu, J. Han, and W. Zhang, “Transmission field enhancement of terahertz pulses in plasmonic, rectangular coaxial geometries,” Opt. Lett. 35(7), 904–906 (2010).
[CrossRef] [PubMed]

X. Lu and W. Zhang, “Terahertz localized plasmonic properties of subwavelength ring and coaxial geometries,” Appl. Phys. Lett. 94(18), 181106 (2009).
[CrossRef]

A. K. Azad, H.-T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[CrossRef]

X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92(12), 121103 (2008).
[CrossRef]

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
[CrossRef] [PubMed]

A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays,” Opt. Lett. 31(17), 2637–2639 (2006).
[CrossRef] [PubMed]

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
[CrossRef]

A. K. Azad and W. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett. 30(21), 2945–2947 (2005).
[CrossRef] [PubMed]

D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29(8), 896–898 (2004).
[CrossRef] [PubMed]

Zhang, X.-C.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
[CrossRef] [PubMed]

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Zhao, L.

C. L. Haynes, A. D. Mcfarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Zhao, Y.

A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays,” Opt. Lett. 31(17), 2637–2639 (2006).
[CrossRef] [PubMed]

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

Appl. Phys. Lett. (6)

C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007).
[CrossRef]

A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005).
[CrossRef]

X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92(12), 121103 (2008).
[CrossRef]

X. Lu and W. Zhang, “Terahertz localized plasmonic properties of subwavelength ring and coaxial geometries,” Appl. Phys. Lett. 94(18), 181106 (2009).
[CrossRef]

K. P. H. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon-on-sapphire studied by optical-pump-terahertz-probe experiments,” Appl. Phys. Lett. 78(22), 3478 (2001).
[CrossRef]

A. K. Azad, H.-T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[CrossRef]

Electron. Lett. (1)

K. Das, “Comment on published carrier lifetime data on silicon-on-insulator (SOI) materials,” Electron. Lett. 23(11), 579 (1987).
[CrossRef]

J. Appl. Phys. (1)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Sub-picosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved THz spectroscopy,” J. Appl. Phys. 90(12), 5915 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

C. L. Haynes, A. D. Mcfarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Nat. Photonics (3)

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[CrossRef]

H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. B (1)

F. Gao, L. Carr, C. D. Porter, D. B. Tanner, G. P. Williams, C. J. Hirschmugl, B. Dutta, X. D. Wu, and S. Etemad, “Quasiparticle damping and the coherence peak in Yba2Cu3O7-δ,” Phys. Rev. B 54(1), 700–710 (1996).
[CrossRef]

Phys. Rev. Lett. (4)

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic array,” Phys. Rev. Lett. 94(3), 033902 (2005).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007).
[CrossRef] [PubMed]

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of (a) a single unit cell, and (b) the periodic array comprising the composite plasmonic crystal. (c) Measured fundamental resonances at . ω L S P / 2 π . (dotted curve) and ω S P / 2 π (solid curve).

Fig. 2
Fig. 2

Frequency-dependent amplitude transmission at various optical excitations: (a) experimental results, and (b) simulation results. The measurements and simulation results for different optical excitations are vertically shifted by 0.5 each for clarity. (c) Measured corresponding phase change. (d) Optical excitation dependent phase change at 0.76 THz. Electric field distribution at resonance frequencies under various optical excitations: (e) 0, (f) 400, and (g) 1000 µJ/cm2.

Fig. 3
Fig. 3

(a) Terahertz transmission and dc conductivity of the bare SOS as functions of optical excitation. (b) Skin depth of Si at 0.81THz under different optical excitations.

Fig. 4
Fig. 4

(a) Measured terahertz transmissions at two frequencies: 0.25 and 0.81 THz. (b) Simulated SPP resonance of LT-GaAs and SOS with same carrier density.

Metrics