Abstract

This study elucidates the characteristics of a long-range surface magnetoplasmon (LRSMP) that propagates on a plasmon film with the Voigt configuration. Particle-in-cell (PIC) simulations and theoretical analyses are performed. Simulation results indicate that LRSMP has non-symmetrical fields. The proposed scheme also verifies the non-reciprocal properties of LRSMP as the direction of an applied external magnetic field is reversed. When surface waves propagate on a plasmon film across an interface on one side of which long-range surface plasmon (LRSP) is allowed while on the other side of which LRSMP is allowed, the interface behaves similar to a defect and transforms the surface waves into radiation modes owing to the mismatch between the field patterns of LRSP and LRSMP. Furthermore, PIC simulation results confirm the presence of a new high-frequency LRSMP whose frequency exceeds the plasma frequency and lacks a LRSP counterpart.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  4. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [CrossRef]
  5. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
    [CrossRef]
  6. M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep. 41(1-8), 1–416 (2001).
    [CrossRef]
  7. J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
    [CrossRef]
  8. K. W. Chiu and J. J. Quinn, “Magnetoplasma surface waves in metals,” Phys. Rev. B 5(12), 4707–4709 (1972).
    [CrossRef]
  9. R. Wallis, J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
    [CrossRef]
  10. C. Uberoi and U. J. Rao, “Surface waves on the boundary of a magnetized plasma,” Plasma Phys. 17(9), 659–670 (1975).
    [CrossRef]
  11. U. J. Rao and C. Uberoi, “Surface magnetoplasmons in semiconductors,” Phys. Rev. B 18(6), 2941–2943 (1978).
    [CrossRef]
  12. R. E. De Wames and W. F. Hall, “Magnetic field effect on plasma-wave dispersion in a dielectric layer,” Phys. Rev. Lett. 29(3), 172–175 (1972).
    [CrossRef]
  13. D. Sarid, “Enhanced surface-magnetoplasma interactions in a semiconductor,” Phys. Rev. B 29(4), 2344–2346 (1984).
    [CrossRef]
  14. M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B 36(11), 5960–5967 (1987).
    [CrossRef]
  15. F. G. Elmzughi and D. R. Tilley, “Surface and guided-wave polariton modes of magnetoplasma films in the Voigt geometry,” J. Phys. Condens. Matter 6(23), 4233–4246 (1994).
    [CrossRef]
  16. J. H. Jacobo-Escobar and G. H. Cocoletzi, “Magnetic field effects on the optical response of a film with a rough surface: Voigt geometry,” Superlattices Microstruct. 33(3), 145–154 (2003).
    [CrossRef]
  17. F. M. Kong, K. Li, H. Huang, B. I. Wu, and J. A. Kong, “Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies,” Progress In Electromagnetics Research, PIER 82, 257–270 (2008).
    [CrossRef]
  18. X. X. Liu, C. F. Tsai, R. L. Chern, and D. P. Tsai, “Dispersion mechanism of surface magnetoplasmons in periodic layered structures,” Appl. Opt. 48(16), 3102–3107 (2009).
    [CrossRef] [PubMed]
  19. Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B 77(20), 205113 (2008).
    [CrossRef]
  20. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed. (Artech House, Boston, 2005).
  21. C. K. Birdsall, and A. B. Langdon, Plasma Physics via Computer Simulation (Institute of Physics Publishing, London, 1991).
  22. Y. C. Lan, “Optical tunneling effect of localized surface plasmon: a simulation study using particle-in-cell method,” Appl. Phys. Lett. 88(7), 071109 (2006).
    [CrossRef]
  23. Y. C. Lan, Y. C. Chang, and P. H. Lee, “Manipulation of tunneling frequencies using magnetic fields for resonant tunneling effects of surface plasmons,” Appl. Phys. Lett. 90(17), 171114 (2007).
    [CrossRef]
  24. J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-3-847 .
    [CrossRef] [PubMed]
  25. T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
    [CrossRef]
  26. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum Press, New York, 1974).
  27. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
    [CrossRef]

2009 (1)

2008 (3)

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[CrossRef]

F. M. Kong, K. Li, H. Huang, B. I. Wu, and J. A. Kong, “Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies,” Progress In Electromagnetics Research, PIER 82, 257–270 (2008).
[CrossRef]

Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B 77(20), 205113 (2008).
[CrossRef]

2007 (1)

Y. C. Lan, Y. C. Chang, and P. H. Lee, “Manipulation of tunneling frequencies using magnetic fields for resonant tunneling effects of surface plasmons,” Appl. Phys. Lett. 90(17), 171114 (2007).
[CrossRef]

2006 (1)

Y. C. Lan, “Optical tunneling effect of localized surface plasmon: a simulation study using particle-in-cell method,” Appl. Phys. Lett. 88(7), 071109 (2006).
[CrossRef]

2005 (3)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-3-847 .
[CrossRef] [PubMed]

2003 (1)

J. H. Jacobo-Escobar and G. H. Cocoletzi, “Magnetic field effects on the optical response of a film with a rough surface: Voigt geometry,” Superlattices Microstruct. 33(3), 145–154 (2003).
[CrossRef]

2001 (1)

M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep. 41(1-8), 1–416 (2001).
[CrossRef]

1994 (1)

F. G. Elmzughi and D. R. Tilley, “Surface and guided-wave polariton modes of magnetoplasma films in the Voigt geometry,” J. Phys. Condens. Matter 6(23), 4233–4246 (1994).
[CrossRef]

1987 (1)

M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B 36(11), 5960–5967 (1987).
[CrossRef]

1984 (1)

D. Sarid, “Enhanced surface-magnetoplasma interactions in a semiconductor,” Phys. Rev. B 29(4), 2344–2346 (1984).
[CrossRef]

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

1978 (1)

U. J. Rao and C. Uberoi, “Surface magnetoplasmons in semiconductors,” Phys. Rev. B 18(6), 2941–2943 (1978).
[CrossRef]

1975 (1)

C. Uberoi and U. J. Rao, “Surface waves on the boundary of a magnetized plasma,” Plasma Phys. 17(9), 659–670 (1975).
[CrossRef]

1974 (1)

R. Wallis, J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[CrossRef]

1972 (3)

R. E. De Wames and W. F. Hall, “Magnetic field effect on plasma-wave dispersion in a dielectric layer,” Phys. Rev. Lett. 29(3), 172–175 (1972).
[CrossRef]

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[CrossRef]

K. W. Chiu and J. J. Quinn, “Magnetoplasma surface waves in metals,” Phys. Rev. B 5(12), 4707–4709 (1972).
[CrossRef]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Barnes, W. L.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[CrossRef]

Bergman, D. J.

Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B 77(20), 205113 (2008).
[CrossRef]

Bolivar, P. H.

Brion, J.

R. Wallis, J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[CrossRef]

Brion, J. J.

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[CrossRef]

Burstein, E.

R. Wallis, J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[CrossRef]

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[CrossRef]

Chang, Y. C.

Y. C. Lan, Y. C. Chang, and P. H. Lee, “Manipulation of tunneling frequencies using magnetic fields for resonant tunneling effects of surface plasmons,” Appl. Phys. Lett. 90(17), 171114 (2007).
[CrossRef]

Chern, R. L.

Chiu, K. W.

K. W. Chiu and J. J. Quinn, “Magnetoplasma surface waves in metals,” Phys. Rev. B 5(12), 4707–4709 (1972).
[CrossRef]

Cocoletzi, G. H.

J. H. Jacobo-Escobar and G. H. Cocoletzi, “Magnetic field effects on the optical response of a film with a rough surface: Voigt geometry,” Superlattices Microstruct. 33(3), 145–154 (2003).
[CrossRef]

De Wames, R. E.

R. E. De Wames and W. F. Hall, “Magnetic field effect on plasma-wave dispersion in a dielectric layer,” Phys. Rev. Lett. 29(3), 172–175 (1972).
[CrossRef]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Elmzughi, F. G.

F. G. Elmzughi and D. R. Tilley, “Surface and guided-wave polariton modes of magnetoplasma films in the Voigt geometry,” J. Phys. Condens. Matter 6(23), 4233–4246 (1994).
[CrossRef]

Gómez Rivas, J.

Halevi, P.

M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B 36(11), 5960–5967 (1987).
[CrossRef]

Hall, W. F.

R. E. De Wames and W. F. Hall, “Magnetic field effect on plasma-wave dispersion in a dielectric layer,” Phys. Rev. Lett. 29(3), 172–175 (1972).
[CrossRef]

Hartstein, A.

R. Wallis, J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[CrossRef]

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[CrossRef]

Hendry, E.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[CrossRef]

Huang, H.

F. M. Kong, K. Li, H. Huang, B. I. Wu, and J. A. Kong, “Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies,” Progress In Electromagnetics Research, PIER 82, 257–270 (2008).
[CrossRef]

Isaac, T. H.

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[CrossRef]

Jacobo-Escobar, J. H.

J. H. Jacobo-Escobar and G. H. Cocoletzi, “Magnetic field effects on the optical response of a film with a rough surface: Voigt geometry,” Superlattices Microstruct. 33(3), 145–154 (2003).
[CrossRef]

Janke, C.

Kong, F. M.

F. M. Kong, K. Li, H. Huang, B. I. Wu, and J. A. Kong, “Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies,” Progress In Electromagnetics Research, PIER 82, 257–270 (2008).
[CrossRef]

Kong, J. A.

F. M. Kong, K. Li, H. Huang, B. I. Wu, and J. A. Kong, “Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies,” Progress In Electromagnetics Research, PIER 82, 257–270 (2008).
[CrossRef]

Kurz, H.

Kushwaha, M. S.

M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep. 41(1-8), 1–416 (2001).
[CrossRef]

M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B 36(11), 5960–5967 (1987).
[CrossRef]

Lan, Y. C.

Y. C. Lan, Y. C. Chang, and P. H. Lee, “Manipulation of tunneling frequencies using magnetic fields for resonant tunneling effects of surface plasmons,” Appl. Phys. Lett. 90(17), 171114 (2007).
[CrossRef]

Y. C. Lan, “Optical tunneling effect of localized surface plasmon: a simulation study using particle-in-cell method,” Appl. Phys. Lett. 88(7), 071109 (2006).
[CrossRef]

Lee, P. H.

Y. C. Lan, Y. C. Chang, and P. H. Lee, “Manipulation of tunneling frequencies using magnetic fields for resonant tunneling effects of surface plasmons,” Appl. Phys. Lett. 90(17), 171114 (2007).
[CrossRef]

Li, K.

F. M. Kong, K. Li, H. Huang, B. I. Wu, and J. A. Kong, “Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies,” Progress In Electromagnetics Research, PIER 82, 257–270 (2008).
[CrossRef]

Liu, X. X.

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Quinn, J. J.

K. W. Chiu and J. J. Quinn, “Magnetoplasma surface waves in metals,” Phys. Rev. B 5(12), 4707–4709 (1972).
[CrossRef]

Rao, U. J.

U. J. Rao and C. Uberoi, “Surface magnetoplasmons in semiconductors,” Phys. Rev. B 18(6), 2941–2943 (1978).
[CrossRef]

C. Uberoi and U. J. Rao, “Surface waves on the boundary of a magnetized plasma,” Plasma Phys. 17(9), 659–670 (1975).
[CrossRef]

Sarid, D.

D. Sarid, “Enhanced surface-magnetoplasma interactions in a semiconductor,” Phys. Rev. B 29(4), 2344–2346 (1984).
[CrossRef]

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Strelniker, Y. M.

Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B 77(20), 205113 (2008).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Tilley, D. R.

F. G. Elmzughi and D. R. Tilley, “Surface and guided-wave polariton modes of magnetoplasma films in the Voigt geometry,” J. Phys. Condens. Matter 6(23), 4233–4246 (1994).
[CrossRef]

Tsai, C. F.

Tsai, D. P.

Uberoi, C.

U. J. Rao and C. Uberoi, “Surface magnetoplasmons in semiconductors,” Phys. Rev. B 18(6), 2941–2943 (1978).
[CrossRef]

C. Uberoi and U. J. Rao, “Surface waves on the boundary of a magnetized plasma,” Plasma Phys. 17(9), 659–670 (1975).
[CrossRef]

Wallis, R.

R. Wallis, J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[CrossRef]

Wallis, R. F.

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[CrossRef]

Wu, B. I.

F. M. Kong, K. Li, H. Huang, B. I. Wu, and J. A. Kong, “Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies,” Progress In Electromagnetics Research, PIER 82, 257–270 (2008).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. C. Lan, “Optical tunneling effect of localized surface plasmon: a simulation study using particle-in-cell method,” Appl. Phys. Lett. 88(7), 071109 (2006).
[CrossRef]

Y. C. Lan, Y. C. Chang, and P. H. Lee, “Manipulation of tunneling frequencies using magnetic fields for resonant tunneling effects of surface plasmons,” Appl. Phys. Lett. 90(17), 171114 (2007).
[CrossRef]

T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008).
[CrossRef]

J. Phys. Condens. Matter (1)

F. G. Elmzughi and D. R. Tilley, “Surface and guided-wave polariton modes of magnetoplasma films in the Voigt geometry,” J. Phys. Condens. Matter 6(23), 4233–4246 (1994).
[CrossRef]

Opt. Express (1)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Phys. Rev. B (7)

K. W. Chiu and J. J. Quinn, “Magnetoplasma surface waves in metals,” Phys. Rev. B 5(12), 4707–4709 (1972).
[CrossRef]

R. Wallis, J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974).
[CrossRef]

Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B 77(20), 205113 (2008).
[CrossRef]

U. J. Rao and C. Uberoi, “Surface magnetoplasmons in semiconductors,” Phys. Rev. B 18(6), 2941–2943 (1978).
[CrossRef]

D. Sarid, “Enhanced surface-magnetoplasma interactions in a semiconductor,” Phys. Rev. B 29(4), 2344–2346 (1984).
[CrossRef]

M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B 36(11), 5960–5967 (1987).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

R. E. De Wames and W. F. Hall, “Magnetic field effect on plasma-wave dispersion in a dielectric layer,” Phys. Rev. Lett. 29(3), 172–175 (1972).
[CrossRef]

J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972).
[CrossRef]

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[CrossRef]

Plasma Phys. (1)

C. Uberoi and U. J. Rao, “Surface waves on the boundary of a magnetized plasma,” Plasma Phys. 17(9), 659–670 (1975).
[CrossRef]

Progress In Electromagnetics Research, PIER (1)

F. M. Kong, K. Li, H. Huang, B. I. Wu, and J. A. Kong, “Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies,” Progress In Electromagnetics Research, PIER 82, 257–270 (2008).
[CrossRef]

Superlattices Microstruct. (1)

J. H. Jacobo-Escobar and G. H. Cocoletzi, “Magnetic field effects on the optical response of a film with a rough surface: Voigt geometry,” Superlattices Microstruct. 33(3), 145–154 (2003).
[CrossRef]

Surf. Sci. Rep. (1)

M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep. 41(1-8), 1–416 (2001).
[CrossRef]

Other (5)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed. (Artech House, Boston, 2005).

C. K. Birdsall, and A. B. Langdon, Plasma Physics via Computer Simulation (Institute of Physics Publishing, London, 1991).

F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum Press, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structure used in the simulations. Regions of blue strip and yellow rectangles denote plasmon film and dielectric film, respectively.

Fig. 2
Fig. 2

(a) Dispersion relations of light, waves in bulk plasmon (BP), waves in bulk magnetized plasmon with ω c = ω p (BMP1) and ω c = 2 ω p (BMP2), SP even (SP L-) and odd (SP L + , LRSP) modes ( ω c = 0 ), SMP L- mode with ω c = ω p (SMP L-1) and ω c = 2 ω p (SMP L-2), and SMP L + (LRSMP) mode with ω c = ω p (SMP L + 1) and ω c = 2 ω p (SMP L + 2). (b) Enlargement of part (a) around ω = 0.45 ω p .

Fig. 3
Fig. 3

Magnetic field ( B z ) contours for (a) B 0 =   0 , (b) B 0 in + z direction and (c) B 0 in –z direction, with ω = 0.45 ω p and ω c = 1.0 ω p .

Fig. 4
Fig. 4

Magnetic field ( B z ) as a function of y, as obtained from PIC simulations and theoretical calculations for (a) B 0 =   0 , (b) B 0 in the + z direction and (c) B 0 in –z direction, with ω = 0.45 ω p and ω c = 1.0 ω p .

Fig. 5
Fig. 5

(a) Magnitude of B 0 as a function of x position, used to investigate LRSMP on the plasmon film with a spatially non-uniform B 0 . (b, c) Magnetic field ( B z ) contours for B 0 in the + z and –z directions, respectively, with a profile of B 0 displayed in (a), ω = 0.45 ω p and ω c =   2 .0 ω p .

Fig. 6
Fig. 6

Magnetic field ( B z ) contours for (a) B 0 =   0 and (b) B 0 in the –z direction, with ω = 1.7 ω p and ω c = 2.0 ω p .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

c 2 k 2 ω 2 = 1 ω p 2 ω 2 ω 2 ω p 2 ω 2 ω c 2 ω p 2   .
y > 0 : H 0 = ( 0 , 0 ,     H 0 z ) e α a y e i ( k x ω t ) , t p < y 0 : H 1 = ( 0 , 0 , H 11 z ) e α m y e i ( k x ω t )     + ( 0 , 0 , H 12 z ) e α m y e i ( k x ω t ) , y t p : H 2 = ( 0 , 0 , H 2 z ) e α a y e i ( k x ω t ) ,
e α m t p ( ε a α a α m k ε 2 ε 1 ε v + 1 ) ( ε a α a α m + k ε 2 ε 1 ε v + 1 ) e α m t p ( ε a α a α m k ε 2 ε 1 ε v 1 ) ( ε a α a α m + k ε 2 ε 1 ε v 1 ) = 0.

Metrics