K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optical tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]
A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 44(16), 3238–3245 (2005).
[Crossref]
[PubMed]
A. Divetia, T. H. Hsieh, J. Zhang, Z. P. Chen, M. Bachman, G.-P. Li, M Bachman, and G. P Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]
R. R. Rawer, W. Stork, C. W. Spraul, and C. Lingenfelder, “Imaging quality of intraocular lenses,” J. Cataract Refract. Surg. 31(8), 1618–1631 (2005).
[Crossref]
[PubMed]
J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]
M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14(12), 1665–1673 (2004).
[Crossref]
S. M. Backman, A. J. Makynen, T. Kolehmainen, and K. Ojala, “Random target method for fast MTF inspection,” Opt. Express 12(12), 2610–2615 (2004).
[Crossref]
[PubMed]
D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]
J. Lee, J. D. Rogers, M. R. Descour, E. Hsu, J. Aaron, K. Sokolov, and R. Richards-Kortum, “Imaging quality assessment of multi-modal miniature microscope,” Opt. Express 11(12), 1436–1451 (2003).
[Crossref]
[PubMed]
J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. deRooij, and R. Dändliker, “Microlens systems for fluorescence detection in chemical microsystems,” Opt. Eng. 40(5), 814–821 (2001).
[Crossref]
M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14(12), 1665–1673 (2004).
[Crossref]
K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optical tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]
A. Divetia, T. H. Hsieh, J. Zhang, Z. P. Chen, M. Bachman, G.-P. Li, M Bachman, and G. P Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]
A. Divetia, T. H. Hsieh, J. Zhang, Z. P. Chen, M. Bachman, G.-P. Li, M Bachman, and G. P Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]
D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]
J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]
A. Divetia, T. H. Hsieh, J. Zhang, Z. P. Chen, M. Bachman, G.-P. Li, M Bachman, and G. P Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]
D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]
M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14(12), 1665–1673 (2004).
[Crossref]
J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. deRooij, and R. Dändliker, “Microlens systems for fluorescence detection in chemical microsystems,” Opt. Eng. 40(5), 814–821 (2001).
[Crossref]
J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. deRooij, and R. Dändliker, “Microlens systems for fluorescence detection in chemical microsystems,” Opt. Eng. 40(5), 814–821 (2001).
[Crossref]
A. Divetia, T. H. Hsieh, J. Zhang, Z. P. Chen, M. Bachman, G.-P. Li, M Bachman, and G. P Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]
J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]
M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14(12), 1665–1673 (2004).
[Crossref]
J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. deRooij, and R. Dändliker, “Microlens systems for fluorescence detection in chemical microsystems,” Opt. Eng. 40(5), 814–821 (2001).
[Crossref]
A. Divetia, T. H. Hsieh, J. Zhang, Z. P. Chen, M. Bachman, G.-P. Li, M Bachman, and G. P Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]
A. Divetia, T. H. Hsieh, J. Zhang, Z. P. Chen, M. Bachman, G.-P. Li, M Bachman, and G. P Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]
A. Divetia, T. H. Hsieh, J. Zhang, Z. P. Chen, M. Bachman, G.-P. Li, M Bachman, and G. P Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]
D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]
R. R. Rawer, W. Stork, C. W. Spraul, and C. Lingenfelder, “Imaging quality of intraocular lenses,” J. Cataract Refract. Surg. 31(8), 1618–1631 (2005).
[Crossref]
[PubMed]
D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]
R. R. Rawer, W. Stork, C. W. Spraul, and C. Lingenfelder, “Imaging quality of intraocular lenses,” J. Cataract Refract. Surg. 31(8), 1618–1631 (2005).
[Crossref]
[PubMed]
J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. deRooij, and R. Dändliker, “Microlens systems for fluorescence detection in chemical microsystems,” Opt. Eng. 40(5), 814–821 (2001).
[Crossref]
K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optical tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]
R. R. Rawer, W. Stork, C. W. Spraul, and C. Lingenfelder, “Imaging quality of intraocular lenses,” J. Cataract Refract. Surg. 31(8), 1618–1631 (2005).
[Crossref]
[PubMed]
R. R. Rawer, W. Stork, C. W. Spraul, and C. Lingenfelder, “Imaging quality of intraocular lenses,” J. Cataract Refract. Surg. 31(8), 1618–1631 (2005).
[Crossref]
[PubMed]
M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14(12), 1665–1673 (2004).
[Crossref]
J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]
J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. deRooij, and R. Dändliker, “Microlens systems for fluorescence detection in chemical microsystems,” Opt. Eng. 40(5), 814–821 (2001).
[Crossref]
J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. deRooij, and R. Dändliker, “Microlens systems for fluorescence detection in chemical microsystems,” Opt. Eng. 40(5), 814–821 (2001).
[Crossref]
J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]
K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optical tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]
A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 44(16), 3238–3245 (2005).
[Crossref]
[PubMed]
K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optical tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]
A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 44(16), 3238–3245 (2005).
[Crossref]
[PubMed]
D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]
A. Divetia, T. H. Hsieh, J. Zhang, Z. P. Chen, M. Bachman, G.-P. Li, M Bachman, and G. P Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]
A. Divetia, T. H. Hsieh, J. Zhang, Z. P. Chen, M. Bachman, G.-P. Li, M Bachman, and G. P Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett. 86(10), 103902 (2005).
[Crossref]
D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171–3172 (2003).
[Crossref]
R. R. Rawer, W. Stork, C. W. Spraul, and C. Lingenfelder, “Imaging quality of intraocular lenses,” J. Cataract Refract. Surg. 31(8), 1618–1631 (2005).
[Crossref]
[PubMed]
J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14(5), 675–680 (2004).
[Crossref]
M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14(12), 1665–1673 (2004).
[Crossref]
K. Aljasem, A. Werber, A. Seifert, and H. Zappe, “Fiber optical tunable probe for endoscopic optical coherence tomography,” J. Opt. A, Pure Appl. Opt. 10(4), 044012 (2008).
[Crossref]
J. C. Roulet, R. Völkel, H. P. Herzig, E. Verpoorte, N. F. deRooij, and R. Dändliker, “Microlens systems for fluorescence detection in chemical microsystems,” Opt. Eng. 40(5), 814–821 (2001).
[Crossref]
H. W. Ren and S. T. Wu, “Variable-focal liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
[Crossref]
[PubMed]
J. Lee, J. D. Rogers, M. R. Descour, E. Hsu, J. Aaron, K. Sokolov, and R. Richards-Kortum, “Imaging quality assessment of multi-modal miniature microscope,” Opt. Express 11(12), 1436–1451 (2003).
[Crossref]
[PubMed]
S. M. Backman, A. J. Makynen, T. Kolehmainen, and K. Ojala, “Random target method for fast MTF inspection,” Opt. Express 12(12), 2610–2615 (2004).
[Crossref]
[PubMed]
J. W. Goodman, Introduction to Fourier Optics, (McGraw Hill, 2005), pp. 12–15, 127–167.
R. R. Shannon, The Art and Science of Optical Design, (Cambridge University Press, 1997), pp. 265–330.
G. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems,” (SPIE Publications, 2001), pps, 1–9, 71–73, 85–88, 94–96.
B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics,(John Wiley & Sons, 2007), pp. 427–432.
K. Aljasem, A. Seifert, and H. Zappe, “Tunable multi-micro-lens system for high lateral resolution endoscopic optical coherence tomography,” in the Proceedings of IEEE Optical MEMS and Nanophotonics, 1, 44–45 (2008).