Abstract

We demonstrate an adaptive mechanical-wetting lens with a concentric reservoir to reduce image aberrations and overcome the gravity effect. This lens adopts liquid pressure to change the interface between two immiscible liquids which, in turn, changes the focal length of the resultant liquid lens. Good optical performance, high resolution, and a wide dynamic range of both positive and negative optical power are achieved. Since no PDMS is employed, such lenses can extend their working range to infrared region by choosing proper liquids.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
    [CrossRef]
  2. S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009).
    [CrossRef] [PubMed]
  3. N. Sugiura and S. Morita, “Variable-focus liquid-filled optics lens,” Appl. Opt. 32(22), 4181–4186 (1993).
    [CrossRef] [PubMed]
  4. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
    [CrossRef] [PubMed]
  5. D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003).
    [CrossRef]
  6. C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102–134104 (2005).
    [CrossRef]
  7. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17(4), 2487–2499 (2009).
    [CrossRef] [PubMed]
  8. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [CrossRef] [PubMed]
  9. M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
    [CrossRef]
  10. C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
    [CrossRef] [PubMed]
  11. S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
    [CrossRef] [PubMed]
  12. T. Shin, C. Chen, J. Ho, and F. Chuang, “Fabrication of PDMS microlens and diffuser using replica molding,” Mirco. Eng. 83(11–12), 2499–2503 (2006).
  13. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [CrossRef]
  14. H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009).
    [CrossRef]
  15. S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84(8), 4462–4465 (1998).
    [CrossRef]
  16. C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” Photon. Technol. Lett. 21(19), 1396–1398 (2009).
    [CrossRef]
  17. D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111–081113 (2010).
    [CrossRef]
  18. C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
    [CrossRef]

2010 (1)

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111–081113 (2010).
[CrossRef]

2009 (6)

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” Photon. Technol. Lett. 21(19), 1396–1398 (2009).
[CrossRef]

S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009).
[CrossRef] [PubMed]

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009).
[CrossRef]

S. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[CrossRef]

S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009).
[CrossRef] [PubMed]

L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17(4), 2487–2499 (2009).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

T. Shin, C. Chen, J. Ho, and F. Chuang, “Fabrication of PDMS microlens and diffuser using replica molding,” Mirco. Eng. 83(11–12), 2499–2503 (2006).

2005 (1)

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102–134104 (2005).
[CrossRef]

2004 (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

2003 (2)

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003).
[CrossRef]

1998 (1)

S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84(8), 4462–4465 (1998).
[CrossRef]

1996 (1)

M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[CrossRef]

1993 (1)

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Berdichevsky, Y.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003).
[CrossRef]

Berge, B.

M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[CrossRef]

Chen, C.

T. Shin, C. Chen, J. Ho, and F. Chuang, “Fabrication of PDMS microlens and diffuser using replica molding,” Mirco. Eng. 83(11–12), 2499–2503 (2006).

Chen, C. N.

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” Photon. Technol. Lett. 21(19), 1396–1398 (2009).
[CrossRef]

Cheng, C. C.

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” Photon. Technol. Lett. 21(19), 1396–1398 (2009).
[CrossRef]

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[CrossRef] [PubMed]

Cheng, L. S.

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” Photon. Technol. Lett. 21(19), 1396–1398 (2009).
[CrossRef]

Choi, J.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003).
[CrossRef]

Chuang, F.

T. Shin, C. Chen, J. Ho, and F. Chuang, “Fabrication of PDMS microlens and diffuser using replica molding,” Mirco. Eng. 83(11–12), 2499–2503 (2006).

De Nicola, S.

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Drakopoulos, M.

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

Ferraro, P.

Feste, S.

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

Finizio, A.

Frehse, F.

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

Grilli, S.

Günzler, T. F.

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Hirsa, A. H.

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102–134104 (2005).
[CrossRef]

Ho, J.

T. Shin, C. Chen, J. Ho, and F. Chuang, “Fabrication of PDMS microlens and diffuser using replica molding,” Mirco. Eng. 83(11–12), 2499–2503 (2006).

Hunger, U. T.

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

Ishikawa, M.

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009).
[CrossRef]

Jiang, H.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111–081113 (2010).
[CrossRef]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Kuhlmann, M.

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Kurapova, O.

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

Lee, C. C.

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102–134104 (2005).
[CrossRef]

Lengeler, B.

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

Li, C.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111–081113 (2010).
[CrossRef]

Lien, V.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003).
[CrossRef]

Lin, Y. J.

Lo, Y. H.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003).
[CrossRef]

López, C. A.

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102–134104 (2005).
[CrossRef]

Miccio, L.

Morita, S.

Murali, S.

Oku, H.

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009).
[CrossRef]

Paturzo, M.

Ren, H.

Reza, S.

S. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[CrossRef]

Riza, N. A.

S. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[CrossRef]

Rolland, J. P.

Schröder, W. H.

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

Schroer, C. G.

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

Schug, C.

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

Shin, T.

T. Shin, C. Chen, J. Ho, and F. Chuang, “Fabrication of PDMS microlens and diffuser using replica molding,” Mirco. Eng. 83(11–12), 2499–2503 (2006).

Simionovici, A. S.

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

Snigirev, A.

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

Snigireva, I.

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

Somogyi, A.

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

Sugiura, N.

Thompson, K. P.

Tsai, C. G.

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” Photon. Technol. Lett. 21(19), 1396–1398 (2009).
[CrossRef]

Vallet, M.

M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[CrossRef]

Vespini, V.

Volvelle, L.

M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[CrossRef]

Wu, S. T.

Xu, S.

Yang, J. T.

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” Photon. Technol. Lett. 21(19), 1396–1398 (2009).
[CrossRef]

Yeh, J. A.

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” Photon. Technol. Lett. 21(19), 1396–1398 (2009).
[CrossRef]

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[CrossRef] [PubMed]

Zeng, X.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111–081113 (2010).
[CrossRef]

Zhang, D.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003).
[CrossRef]

Zhu, D.

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111–081113 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003).
[CrossRef]

C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102–134104 (2005).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009).
[CrossRef]

D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111–081113 (2010).
[CrossRef]

C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003).
[CrossRef]

J. Appl. Phys. (1)

S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84(8), 4462–4465 (1998).
[CrossRef]

Mirco. Eng. (1)

T. Shin, C. Chen, J. Ho, and F. Chuang, “Fabrication of PDMS microlens and diffuser using replica molding,” Mirco. Eng. 83(11–12), 2499–2503 (2006).

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Photon. Technol. Lett. (1)

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” Photon. Technol. Lett. 21(19), 1396–1398 (2009).
[CrossRef]

Polymer (Guildf.) (1)

M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (3907 KB)     
» Media 2: MOV (3339 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Device structure of a mechanical-wetting lens: (a) Assembled system, (b) Side view of the reservoir body, and (c) Cap with a bump inside.

Fig. 2
Fig. 2

Side view of a mechanical-wetting lens structure in: (a) Initial state, (b) Further positive state, and (c) Negative state.

Fig. 3
Fig. 3

Transmission spectra of SL-5267 and Glycerol measured from 400 nm to 2000 nm.

Fig. 4
Fig. 4

Images taken through the lens in: (a) Initial state, (b) Further positive state, (c) Negative state, (d) Lens’ transition states from positive power to negative power (Media 1),and (e) Len’s resolution at the initial state.

Fig. 5
Fig. 5

(a) BFD measurement of the positive lens, (b) BFD measurement of the negative lens, and (c) Measured BFD vs. traveling distance of the bottom cap.

Fig. 6
Fig. 6

(a) Experimental setup for lens testing under 1310nm illumination, Light spots taken in: (b) Initial state, (c) Less positive state, and (d) Negative state (Media 2)

Metrics