Abstract

A novel approach is proposed and experimentally demonstrated for optical steganography transmission in WDM networks using temporal phase coded optical signals with spectral notch filtering. A temporal phase coded stealth channel is temporally and spectrally overlaid onto a public WDM channel. Direct detection of the public channel is achieved in the presence of the stealth channel. The interference from the public channel is suppressed by spectral notching before the detection of the optical stealth signal. The approach is shown to have good compatibility and robustness to the existing WDM network for optical steganography transmission.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Wu and E. E. Narimanov, “A method for secure communications over a public fiber-optical network,” Opt. Express 14(9), 3738–3751 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-9-3738 .
    [CrossRef] [PubMed]
  2. B. B. Wu and E. E. Narimanov, “Analysis of stealth communications over a public fiber-optical network,” Opt. Express 15(2), 289–301 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-289 .
    [CrossRef] [PubMed]
  3. M. P. Fok and P. R. Prucnal, “Compact and low-latency scheme for optical steganography using chirped fibre Bragg gratings,” Electron. Lett. 45(3), 179–180 (2009).
    [CrossRef]
  4. K. Kravtsov, B. Wu, I. Glysk, P. R. Prucnal, and E. Narimanov, “Stealth Transmission over a WDM Network with Detection Based on an All-Optical Thresholder,” in Proceeding of 20th Annual Meeting of the IEEE Lasers and Electro-Optics (Florida, 2007), pp. 480–481.
  5. B. Wu, A. Agarwal, I. Glesk, E. Narimanov, S. Etemad, and P. Prucnal, “Steganographic Fiber-Optic Transmission Using Coherent Spectral-Phase-Encoded Optical CDMA,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CFF5. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CFF5 .
  6. B. Wu, P. R. Prucnal, and E. Narimanov, “Secure transmission over an existing public WDM lightwave network,” IEEE Photon. Technol. Lett. 18(17), 1870–1872 (2006).
    [CrossRef]
  7. T. Shake, “Security Performance of Optical CDMA Against Eavesdropping,” J. Lightwave Technol. 23(2), 655–670 (2005).
    [CrossRef]
  8. Z. Jiang, D. Seo, S. Yang, D. Leaird, R. Roussev, C. Langrock, M. Fejer, and A. Weiner, “Four-User, 2.5-Gb/s, Spectrally Coded OCDMA System Demonstration Using Low-Power Nonlinear Processing,” J. Lightwave Technol. 23(1), 143–158 (2005).
    [CrossRef]
  9. V. Baby, I. Glesk, R. J. Runser, R. Fischer, Y.-K. Huang, C.-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
    [CrossRef]
  10. P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A Comparative Study of the Performance of Seven-and 63-Chip Optical Code-Division Multiple-Access Encoders and Decoders Based on Superstructured Fiber Bragg Gratings,” J. Lightwave Technol. 19(9), 1352–1365 (2001).
    [CrossRef]
  11. X. Wang, K. Matsushima, A. Nishiki, N. Wada, and K. Kitayama, “High reflectivity superstructured FBG for coherent optical code generation and recognition,” Opt. Express 12(22), 5457–5468 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-22-5457 .
    [CrossRef] [PubMed]
  12. J. Castro, I. Djordjevic, and D. Geraghty, “Novel Super Structured Bragg Gratings for Optical Encryption,” J. Lightwave Technol. 24(4), 1875–1885 (2006).
    [CrossRef]
  13. S. Shen and A. M. Weiner, “Suppression of WDM interference for error-free detection of ultrashort-pulse CDMA signals in spectrally overlaid hybrid WDM-CDMA operation,” IEEE Photon. Technol. Lett. 13(1), 82–84 (2001).
    [CrossRef]
  14. X. Wang, T. Hamanaka, N. Wada, and K. Kitayama, “Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system,” Opt. Express 13(14), 5499–5505 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5499 .
    [CrossRef] [PubMed]
  15. K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15(20), 13114–13122 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=OE-15-20-13114 .
    [CrossRef] [PubMed]
  16. C. Guo, X. Hong, and S. He, “Elimination of Multiple Access Interference in Ultrashort Pulse OCDMA Through Nonlinear Polarization Rotation,” IEEE Photon. Technol. Lett. 21(20), 1484–1486 (2009).
    [CrossRef]

2009 (2)

M. P. Fok and P. R. Prucnal, “Compact and low-latency scheme for optical steganography using chirped fibre Bragg gratings,” Electron. Lett. 45(3), 179–180 (2009).
[CrossRef]

C. Guo, X. Hong, and S. He, “Elimination of Multiple Access Interference in Ultrashort Pulse OCDMA Through Nonlinear Polarization Rotation,” IEEE Photon. Technol. Lett. 21(20), 1484–1486 (2009).
[CrossRef]

2007 (2)

2006 (3)

2005 (4)

2004 (1)

2001 (2)

P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A Comparative Study of the Performance of Seven-and 63-Chip Optical Code-Division Multiple-Access Encoders and Decoders Based on Superstructured Fiber Bragg Gratings,” J. Lightwave Technol. 19(9), 1352–1365 (2001).
[CrossRef]

S. Shen and A. M. Weiner, “Suppression of WDM interference for error-free detection of ultrashort-pulse CDMA signals in spectrally overlaid hybrid WDM-CDMA operation,” IEEE Photon. Technol. Lett. 13(1), 82–84 (2001).
[CrossRef]

Baby, V.

V. Baby, I. Glesk, R. J. Runser, R. Fischer, Y.-K. Huang, C.-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[CrossRef]

Bres, C.-S.

V. Baby, I. Glesk, R. J. Runser, R. Fischer, Y.-K. Huang, C.-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[CrossRef]

Bubnov, M. M.

Castro, J.

Curtis, T. H.

V. Baby, I. Glesk, R. J. Runser, R. Fischer, Y.-K. Huang, C.-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[CrossRef]

Djordjevic, I.

Fejer, M.

Fischer, R.

V. Baby, I. Glesk, R. J. Runser, R. Fischer, Y.-K. Huang, C.-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[CrossRef]

Fok, M. P.

M. P. Fok and P. R. Prucnal, “Compact and low-latency scheme for optical steganography using chirped fibre Bragg gratings,” Electron. Lett. 45(3), 179–180 (2009).
[CrossRef]

Geraghty, D.

Glesk, I.

V. Baby, I. Glesk, R. J. Runser, R. Fischer, Y.-K. Huang, C.-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[CrossRef]

Guo, C.

C. Guo, X. Hong, and S. He, “Elimination of Multiple Access Interference in Ultrashort Pulse OCDMA Through Nonlinear Polarization Rotation,” IEEE Photon. Technol. Lett. 21(20), 1484–1486 (2009).
[CrossRef]

Hamanaka, T.

He, S.

C. Guo, X. Hong, and S. He, “Elimination of Multiple Access Interference in Ultrashort Pulse OCDMA Through Nonlinear Polarization Rotation,” IEEE Photon. Technol. Lett. 21(20), 1484–1486 (2009).
[CrossRef]

Hong, X.

C. Guo, X. Hong, and S. He, “Elimination of Multiple Access Interference in Ultrashort Pulse OCDMA Through Nonlinear Polarization Rotation,” IEEE Photon. Technol. Lett. 21(20), 1484–1486 (2009).
[CrossRef]

Huang, Y.-K.

V. Baby, I. Glesk, R. J. Runser, R. Fischer, Y.-K. Huang, C.-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[CrossRef]

Ibsen, M.

Jiang, Z.

Kitayama, K.

Kravtsov, K.

Kwong, W. C.

V. Baby, I. Glesk, R. J. Runser, R. Fischer, Y.-K. Huang, C.-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[CrossRef]

Langrock, C.

Leaird, D.

Matsushima, K.

Narimanov, E.

B. Wu, P. R. Prucnal, and E. Narimanov, “Secure transmission over an existing public WDM lightwave network,” IEEE Photon. Technol. Lett. 18(17), 1870–1872 (2006).
[CrossRef]

Narimanov, E. E.

Nishiki, A.

Petropoulos, P.

Prucnal, P. R.

M. P. Fok and P. R. Prucnal, “Compact and low-latency scheme for optical steganography using chirped fibre Bragg gratings,” Electron. Lett. 45(3), 179–180 (2009).
[CrossRef]

K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15(20), 13114–13122 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=OE-15-20-13114 .
[CrossRef] [PubMed]

B. Wu, P. R. Prucnal, and E. Narimanov, “Secure transmission over an existing public WDM lightwave network,” IEEE Photon. Technol. Lett. 18(17), 1870–1872 (2006).
[CrossRef]

V. Baby, I. Glesk, R. J. Runser, R. Fischer, Y.-K. Huang, C.-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[CrossRef]

Richardson, D.

Roussev, R.

Runser, R. J.

V. Baby, I. Glesk, R. J. Runser, R. Fischer, Y.-K. Huang, C.-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[CrossRef]

Seo, D.

Shake, T.

Shen, S.

S. Shen and A. M. Weiner, “Suppression of WDM interference for error-free detection of ultrashort-pulse CDMA signals in spectrally overlaid hybrid WDM-CDMA operation,” IEEE Photon. Technol. Lett. 13(1), 82–84 (2001).
[CrossRef]

Teh, P.

Wada, N.

Wang, X.

Weiner, A.

Weiner, A. M.

S. Shen and A. M. Weiner, “Suppression of WDM interference for error-free detection of ultrashort-pulse CDMA signals in spectrally overlaid hybrid WDM-CDMA operation,” IEEE Photon. Technol. Lett. 13(1), 82–84 (2001).
[CrossRef]

Wu, B.

B. Wu, P. R. Prucnal, and E. Narimanov, “Secure transmission over an existing public WDM lightwave network,” IEEE Photon. Technol. Lett. 18(17), 1870–1872 (2006).
[CrossRef]

Wu, B. B.

Yang, S.

Electron. Lett. (1)

M. P. Fok and P. R. Prucnal, “Compact and low-latency scheme for optical steganography using chirped fibre Bragg gratings,” Electron. Lett. 45(3), 179–180 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

B. Wu, P. R. Prucnal, and E. Narimanov, “Secure transmission over an existing public WDM lightwave network,” IEEE Photon. Technol. Lett. 18(17), 1870–1872 (2006).
[CrossRef]

V. Baby, I. Glesk, R. J. Runser, R. Fischer, Y.-K. Huang, C.-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005).
[CrossRef]

S. Shen and A. M. Weiner, “Suppression of WDM interference for error-free detection of ultrashort-pulse CDMA signals in spectrally overlaid hybrid WDM-CDMA operation,” IEEE Photon. Technol. Lett. 13(1), 82–84 (2001).
[CrossRef]

C. Guo, X. Hong, and S. He, “Elimination of Multiple Access Interference in Ultrashort Pulse OCDMA Through Nonlinear Polarization Rotation,” IEEE Photon. Technol. Lett. 21(20), 1484–1486 (2009).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (5)

Other (2)

K. Kravtsov, B. Wu, I. Glysk, P. R. Prucnal, and E. Narimanov, “Stealth Transmission over a WDM Network with Detection Based on an All-Optical Thresholder,” in Proceeding of 20th Annual Meeting of the IEEE Lasers and Electro-Optics (Florida, 2007), pp. 480–481.

B. Wu, A. Agarwal, I. Glesk, E. Narimanov, S. Etemad, and P. Prucnal, “Steganographic Fiber-Optic Transmission Using Coherent Spectral-Phase-Encoded Optical CDMA,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CFF5. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CFF5 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of spectral notched TPC-OCDMA for optical steganography applications. TP: temporal phase; AC: autocorrelation; TNFs: tunable notch filters.

Fig. 2
Fig. 2

(Color online) (a) Spectra of notch filtered temporal phase coded signal without added ASE noise. The pink line shows the measured filtering curve of cascaded notching filters A, B and C, NF: notch filter. (b) measured BER results of TPC-OCDMA system with or without added ASE noise for different spectrum-notching cases (different central notching wavelengths and different number of notching wavelengths).

Fig. 3
Fig. 3

(Color online) Experimental setup of optical steganography transmission in WDM networks using spectral notched temporal phase coded signals. The inset eye diagram shows the measured eye diagram at point (a) when only the stealth signal is on. The inset spectra show the measured spectra at point (a) (in the case with and without stealth channel). The spectra without (red dot line) and with (black solid line) stealth signal are indistinguishable. MLFL: mode-locked fiber laser; PC: polarization controller; ATT: attenuator; TFF: thin film filter; EDFA: erbium doped fiber amplifier; MZM: Mach-Zehnder modulator.

Fig. 4
Fig. 4

Measured eye diagrams: (a)-(b) received optical stealth signal without notch filtering; (c)-(d) received optical stealth signal with notch filtering. The interference of stealth channel from WDM channel is significantly reduced by notch filtering when comparing (a) with (c). (e)-(f) received public channel signal. The stealth signal is temporally concealed when comparing (e) with (f).

Fig. 5
Fig. 5

Measured BER results of (a) received optical stealth channel. Multiple spectral notching is used when a public channel (a WDM channel) is present; (b) public channel. The power penalty induced by stealth signal is small (~0.4dB).

Metrics